
Fingerprint Image

Enhancement and

Minutiae Extraction

Raymond Thai

This report is submitted as partial fulfilment
of the requirements for the Honours Programme of the
School of Computer Science and Software Engineering,

The University of Western Australia,
2003



Abstract

Fingerprints are the oldest and most widely used form of biometric identification.
Despite the widespread use of fingerprints, there is little statistical theory on the
uniqueness of fingerprint minutiae. A critical step in studying the statistics of
fingerprint minutiae is to reliably extract minutiae from the fingerprint images.
However, fingerprint images are rarely of perfect quality. They may be degraded
and corrupted due to variations in skin and impression conditions. Thus, image
enhancement techniques are employed prior to minutiae extraction to obtain a
more reliable estimation of minutiae locations.

In this dissertation, I firstly provide discussion on the methodology and im-
plementation of techniques for fingerprint image enhancement and minutiae ex-
traction. Experiments using a mixture of both synthetic test images and real
fingerprint images are then conducted to evaluate the performance of the imple-
mented techniques. In combination with these techniques, preliminary results on
the statistics of fingerprint images are then presented and discussed.

Keywords: fingerprint, image enhancement, filtering, minutiae extraction, im-
age postprocessing, fingerprint statistics.
CR Categories: I.4.3 Pattern Recognition - Computer Vision.
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CHAPTER 1

Introduction

Fingerprints have been used for over a century and are the most widely used form
of biometric identification. Fingerprint identification is commonly employed in
forensic science to support criminal investigations, and in biometric systems such
as civilian and commercial identification devices. Despite this widespread use
of fingerprints, there has been little statistical work done on the uniqueness of
fingerprint minutiae. In particular, the issue of how many minutiae points should
be used for matching a fingerprint is unresolved.

The fingerprint of an individual is unique and remains unchanged over a
lifetime. A fingerprint is formed from an impression of the pattern of ridges on
a finger. A ridge is defined as a single curved segment, and a valley is the region
between two adjacent ridges. The minutiae, which are the local discontinuities
in the ridge flow pattern, provide the features that are used for identification.
Details such as the type, orientation, and location of minutiae are taken into
account when performing minutiae extraction [9].

Galton [5] defined a set of features for fingerprint identification, which since
then, has been refined to include additional types of fingerprint features. How-
ever, most of these features are not commonly used in fingerprint identification
systems. Instead the set of minutiae types are restricted into only two types,
ridge endings and bifurcations, as other types of minutiae can be expressed in
terms of these two feature types. Ridge endings are the points where the ridge
curve terminates, and bifurcations are where a ridge splits from a single path to
two paths at a Y-junction. Figure 1.1 illustrates an example of a ridge ending
and a bifurcation. In this example, the black pixels correspond to the ridges, and
the white pixels correspond to the valleys.
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(a) Ridge ending (b) Bifurcation

Figure 1.1: Example of a ridge ending and a bifurcation.

Fingerprint images are rarely of perfect quality. They may be degraded and
corrupted with elements of noise due to many factors including variations in skin
and impression conditions. This degradation can result in a significant number
of spurious minutiae being created and genuine minutiae being ignored. A crit-
ical step in studying the statistics of fingerprint minutiae is to reliably extract
minutiae from fingerprint images. Thus, it is necessary to employ image enhance-
ment techniques prior to minutiae extraction to obtain a more reliable estimate
of minutiae locations.

The primary aim of this project is to implement a series of techniques for fin-
gerprint image enhancement and minutiae extraction. Experiments using both
synthetic test images and real fingerprint images are used to assess the perfor-
mance of the implemented techniques. These techniques are then used to extract
minutiae from a sample set of fingerprint images. By using the extracted minu-
tiae data, preliminary experiments on the statistics of fingerprints can then be
conducted.

This dissertation is organised into three main topics, with each chapter fo-
cusing on a different topic. Each chapter builds on the work discussed in earlier
chapters. Chapter 2 describes the methodology and implementation of a series
of techniques for fingerprint image enhancement. Chapter 3 provides discussion
on minutiae extraction and fingerprint image postprocessing. Both Chapters 2
and 3 are structured in the same way in that each chapter contains a literature
review, methodology, and an experimental results section. Chapter 4 presents the
methodology and results of conducting statistical experiments on fingerprint im-
ages. Chapter 5 provides concluding comments and also lists further extensions
that can be made to this project.
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CHAPTER 2

Fingerprint Image Enhancement

The quality of the ridge structures in a fingerprint image is an important charac-
teristic, as the ridges carry the information of characteristic features required for
minutiae extraction. Ideally, in a well-defined fingerprint image, the ridges and
valleys should alternate and flow in locally constant direction. This regularity fa-
cilitates the detection of ridges and consequently, allows minutiae to be precisely
extracted from the thinned ridges. However, in practice, a fingerprint image may
not always be well defined due to elements of noise that corrupt the clarity of
the ridge structures. This corruption may occur due to variations in skin and
impression conditions such as scars, humidity, dirt, and non-uniform contact with
the fingerprint capture device [9]. Thus, image enhancement techniques are often
employed to reduce the noise and enhance the definition of ridges against valleys.

This chapter provides discussion on the methodology and implementation of
a fingerprint image enhancement algorithm. First, I will review existing tech-
niques in the field of fingerprint image enhancement. This will be followed by a
description of the methods used to implement the enhancement algorithm. The
results of the experiments involving each stage of the fingerprint enhancement
algorithm will then be presented and discussed.

2.1 Literature review

One of the most widely cited fingerprint enhancement techniques is the method
employed by Hong et al. [8], which is based on the convolution of the image with
Gabor filters tuned to the local ridge orientation and ridge frequency. The main
stages of this algorithm include normalisation, ridge orientation estimation, ridge
frequency estimation and filtering.

The first step in this approach involves the normalisation of the fingerprint
image so that it has a prespecified mean and variance. Due to imperfections
in the fingerprint image capture process such as non-uniform ink intensity or
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non-uniform contact with the fingerprint capture device, a fingerprint image may
exhibit distorted levels of variation in grey-level values along the ridges and val-
leys. Thus, normalisation is used to reduce the effect of these variations, which
facilitates the subsequent image enhancement steps.

An orientation image is then calculated, which is a matrix of direction vectors
representing the ridge orientation at each location in the image. The widely
employed gradient-based approach is used to calculate the gradient [18, 20, 22],
which makes use of the fact that the orientation vector is orthogonal to the
gradient. Firstly, the image is partitioned into square blocks and the gradient is
calculated for every pixel, in the x and y directions. The orientation vector for
each block can then be derived by performing an averaging operation on all the
vectors orthogonal to the gradient pixels in the block. Due to the presence of
noise and corrupted elements in the image, the ridge orientation may not always
be correctly determined. Given that the ridge orientation varies slowly in a local
neighbourhood, the orientation image is then smoothed using a low-pass filter to
reduce the effect of outliers.

The next step in the image enhancement process is the estimation of the ridge
frequency image. The frequency image defines the local frequency of the ridges
contained in the fingerprint. Firstly, the image is divided into square blocks and
an oriented window is calculated for each block. For each block, an x-signature
signal is constructed using the ridges and valleys in the oriented window. The x-
signature is the projection of all the grey level values in the oriented window along
a direction orthogonal to the ridge orientation. Consequently, the projection
forms a sinusoidal-shape wave in which the centre of a ridge maps itself as a local
minimum in the projected wave. The distance between consecutive peaks in the
x-signature can then be used to estimate the frequency of the ridges.

Fingerprint enhancement methods based on the Gabor filter have been widely
used to facilitate various fingerprint applications such as fingerprint matching [17,
19] and fingerprint classification [12]. Gabor filters are bandpass filters that have
both frequency-selective and orientation-selective properties [4], which means the
filters can be effectively tuned to specific frequency and orientation values. One
useful characteristic of fingerprints is that they are known to have well defined lo-
cal ridge orientation and ridge frequency. Therefore, the enhancement algorithm
takes advantage of this regularity of spatial structure by applying Gabor filters
that are tuned to match the local ridge orientation and frequency.

Based on the local orientation and ridge frequency around each pixel, the
Gabor filter is applied to each pixel location in the image. The effect is that the
filter enhances the ridges oriented in the direction of the local orientation, and
decreases anything oriented differently. Hence, the filter increases the contrast
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between the foreground ridges and the background, whilst effectively reducing
noise.

An alternative approach to enhancing the features in a fingerprint image is the
technique employed by Sherlock [21] called directional Fourier filtering. The pre-
vious approach was a spatial domain technique that involves spatial convolution
of the image with filters, which can be computationally expensive. Alternatively,
operating in the frequency domain allows one to efficiently convolve the finger-
print image with filters of full image size.

The image enhancement process begins by firstly computing the orientation
image. In contrast to the previous method, which estimates the ridge orientation
using a continuous range of directions, this method uses a set of only 16 directions
to calculate the orientation. An image window is centred at a point in the raw
image, which is used to obtain a projection of the local ridge information. The
image window is then rotated in each of the 16 equally spaced directions, and in
each direction a projection along the window’s y axis is formed. The projection
with the maximum variance is used as the dominant orientation for that point in
the image. This process is then repeated for each pixel to form the orientation
image.

Similar to the filtering stage applied by Hong et al.: after the orientation image
has been computed, the raw image is then filtered using a set of bandpass filters
tuned to match the ridge orientation. The image is firstly converted from the
spatial domain into the frequency domain by application of the two-dimensional
discrete Fourier transform. The Fourier image is then filtered using a set of 16
Butterworth filters with each filter tuned to a particular orientation. The number
of directional filters corresponds to the set of directions used to calculate the
orientation image. After each directional filter has been independently applied
to the Fourier image, the inverse Fourier transform is used to convert each image
back to the spatial domain, thereby producing a set of directionally filtered images
called prefiltered images.

The next step in the enhancement process is to construct the final filtered
image using the pixel values from the prefiltered images. This requires the value
of the ridge orientation at each pixel in the raw image and the filtering direction
of each prefiltered image. Each point in the final image is then computed by
selecting, from the prefiltered images the pixel value whose filtering direction
most closely matches the actual ridge orientation. The output of the filtering
stage is an enhanced version of the image that has been smoothed in the direction
of the ridges.

Lastly, local adaptive thresholding is applied to the directionally filtered im-
age, which produces the final enhanced binary image. This involves calculating
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the average of the grey-level values within an image window at each pixel, and if
the average is greater than the threshold, then the pixel value is set to a binary
value of one; otherwise, it is set to zero. The grey-level image is converted to a
binary image, as there are only two levels of interest, the foreground ridges and
the background valleys.

Overall, it can be seen that most techniques for fingerprint image enhance-
ment are based on filters that are tuned according to the local characteristics of
fingerprint images. Both of the examined techniques employ the ridge orienta-
tion information for tuning of the filter. However, only the approach by Hong et
al. takes into account the ridge frequency information, as Sherlock’s approach
assumes the ridge frequency to be constant. By using both the orientation and
ridge frequency information, it allows for accurate tuning of the Gabor filter
parameters, which consequently leads to better enhancement results. Hence, I
have chosen to employ the Gabor filtering approach by Hong et al. to perform
fingerprint image enhancement.

2.2 Methodology

This section describes the methods for constructing a series of image enhancement
techniques for fingerprint images. The algorithm I have implemented is built on
the techniques developed by Hong et al. This algorithm consists of four main
stages:

• normalisation,

• orientation estimation,

• ridge frequency estimation, and

• Gabor filtering.

In addition to these four stages, I have implemented three additional stages
that include:

• segmentation,

• binarisation, and

• thinning.

In this section, I will discuss the methodology for each stage of the enhance-
ment algorithm, including any modifications that have been made to the original
techniques.
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2.2.1 Segmentation

The first step of the fingerprint enhancement algorithm is image segmentation.
Segmentation is the process of separating the foreground regions in the image
from the background regions. The foreground regions correspond to the clear
fingerprint area containing the ridges and valleys, which is the area of interest.
The background corresponds to the regions outside the borders of the fingerprint
area, which do not contain any valid fingerprint information. When minutiae
extraction algorithms are applied to the background regions of an image, it results
in the extraction of noisy and false minutiae. Thus, segmentation is employed
to discard these background regions, which facilitates the reliable extraction of
minutiae.

In a fingerprint image, the background regions generally exhibit a very low
grey-scale variance value, whereas the foreground regions have a very high vari-
ance. Hence, a method based on variance thresholding [16] can be used to perform
the segmentation. Firstly, the image is divided into blocks and the grey-scale vari-
ance is calculated for each block in the image. If the variance is less than the
global threshold, then the block is assigned to be a background region; otherwise,
it is assigned to be part of the foreground. The grey-level variance for a block of
size W ×W is defined as:

V (k) =
1

W 2

W−1∑

i=0

W−1∑

j=0

(I(i, j)−M(k))2 (2.1)

where V (k) is the variance for block k, I(i, j) is the grey-level value at pixel
(i, j), and M(k) is the mean grey-level value for the block k.

2.2.2 Normalisation

The next step in the fingerprint enhancement process is image normalisation.
Normalisation is used to standardise the intensity values in an image by adjusting
the range of grey-level values so that it lies within a desired range of values. Let
I(i, j) represent the grey-level value at pixel (i, j), and N(i, j) represent the
normalised grey-level value at pixel (i, j). The normalised image is defined as:

N(i, j) =





M0 +
√

V0(I(i,j)−M)2

V
if I(i, j) > M,

M0 −
√

V0(I(i,j)−M)2

V
otherwise,

(2.2)

where M and V are the estimated mean and variance of I(i, j), respectively,
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and M0 and V0 are the desired mean and variance values, respectively. Normal-
isation does not change the ridge structures in a fingerprint; it is performed to
standardise the dynamic levels of variation in grey-level values, which facilitates
the processing of subsequent image enhancement stages.

2.2.3 Orientation estimation

(x,y)

θ

Figure 2.1: The orientation of a ridge pixel in a fingerprint.

The orientation field of a fingerprint image defines the local orientation of the
ridges contained in the fingerprint (see Figure 2.1). The orientation estimation is
a fundamental step in the enhancement process as the subsequent Gabor filtering
stage relies on the local orientation in order to effectively enhance the fingerprint
image. The least mean square estimation method employed by Hong et al. is used
to compute the orientation image. However, instead of estimating the orientation
block-wise, I have chosen to extend their method into a pixel-wise scheme, which
produces a finer and more accurate estimation of the orientation field. The steps
for calculating the orientation at pixel (i, j) are as follows:

1. Firstly, a block of size W ×W is centred at pixel (i, j) in the normalised
fingerprint image.

2. For each pixel in the block, compute the gradients ∂x(i, j) and ∂y(i, j),
which are the gradient magnitudes in the x and y directions, respectively.
The horizontal Sobel operator is used to compute ∂x(i, j) :




1 0 −1
2 0 −2
1 0 −1




(2.3)

The vertical Sobel operator is used to compute ∂y(i, j) :
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1 2 1
0 0 0

−1 −2 −1




(2.4)

3. The local orientation at pixel (i, j) can then be estimated using the following
equations:

Vx(i, j) =

i+W
2∑

u=i−W
2

j+W
2∑

v=j−W
2

2∂x(u, v)∂y(u, v), (2.5)

Vy(i, j) =

i+W
2∑

u=i−W
2

j+W
2∑

v=j−W
2

∂2
x(u, v)∂2

y(u, v), (2.6)

θ(i, j) =
1

2
tan−1 Vy(i, j)

Vx(i, j)
, (2.7)

where θ(i, j) is the least square estimate of the local orientation at the block
centred at pixel (i, j).

4. Smooth the orientation field in a local neighbourhood using a Gaussian
filter. The orientation image is firstly converted into a continuous vector
field, which is defined as:

Φx(i, j) = cos(2θ(i, j)), (2.8)

Φy(i, j) = sin(2θ(i, j)), (2.9)

where Φx and Φy are the x and y components of the vector field, respec-
tively. After the vector field has been computed, Gaussian smoothing is
then performed as follows:

Φ′
x(i, j) =

wΦ
2∑

u=−wΦ
2

wΦ
2∑

v=−wΦ
2

G(u, v)Φx(i− uw, j − vw), (2.10)

Φ′
y(i, j) =

wΦ
2∑

u=−wΦ
2

wΦ
2∑

v=−wΦ
2

G(u, v)Φy(i− uw, j − vw), (2.11)

where G is a Gaussian low-pass filter of size wΦ × wΦ.
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5. The final smoothed orientation field O at pixel (i, j) is defined as:

O(i, j) =
1

2
tan−1 Φ′

y(i, j)

Φ′
x(i, j)

. (2.12)

2.2.4 Ridge frequency estimation

In addition to the orientation image, another important parameter that is used
in the construction of the Gabor filter is the local ridge frequency. The frequency
image represents the local frequency of the ridges in a fingerprint. The first
step in the frequency estimation stage is to divide the image into blocks of size
W ×W . The next step is to project the grey-level values of all the pixels located
inside each block along a direction orthogonal to the local ridge orientation.
This projection forms an almost sinusoidal-shape wave with the local minimum
points corresponding to the ridges in the fingerprint. An example of a projected
waveform is shown in Figure 2.2.

I have modified the original frequency estimation stage used by Hong et al.
to include an additional projection smoothing step prior to computing the ridge
spacing. This involves smoothing the projected waveform using a Gaussian low-
pass filter of size w × w to reduce the effect of noise in the projection. The
ridge spacing S(i, j) is then computed by counting the median number of pixels
between consecutive minima points in the projected waveform. Hence, the ridge
frequency F (i, j) for a block centred at pixel (i, j) is defined as:

F (i, j) =
1

S(i, j)
. (2.13)

Given that the fingerprint is scanned at a fixed resolution, then ideally the
ridge frequency values should lie within a certain range. However, there are cases
where a valid frequency value cannot be reliably obtained from the projection.
Examples are when no consecutive peaks can be detected from the projection,
and also when minutiae points appear in the block. For the blocks where minutiae
points appear, the projected waveform does not produce a well-defined sinusoidal-
shape wave, which can lead to an inaccurate estimation of the ridge frequency.
Thus, the out of range frequency values are interpolated using values from neigh-
bouring blocks that have a well-defined frequency.
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(b)

Figure 2.2: The projection of the intensity values of the pixels along a direction
orthogonal to the local ridge orientation. (a) A 32× 32 block from a fingerprint
image. (b) The projected waveform of the block.

11



2.2.5 Gabor filtering

Once the ridge orientation and ridge frequency information has been determined,
these parameters are used to construct the even-symmetric Gabor filter. A two-
dimensional Gabor filter consists of a sinusoidal plane wave of a particular ori-
entation and frequency, modulated by a Gaussian envelope [4]. Gabor filters are
employed because they have frequency-selective and orientation-selective proper-
ties. These properties allow the filter to be tuned to give maximal response to
ridges at a specific orientation and frequency in the fingerprint image. There-
fore, a properly tuned Gabor filter can be used to effectively preserve the ridge
structures while reducing noise.

The even-symmetric Gabor filter is the real part of the Gabor function, which
is given by a cosine wave modulated by a Gaussian (see Figure 2.3). An even-
symmetric Gabor filter in the spatial domain is defined as [10]:

G(x, y; θ, f) = exp

{
−1

2

[
x2

θ

σ2
x

+
y2

θ

σ2
y

]}
cos(2πfxθ), (2.14)

xθ = x cos θ + y sin θ, (2.15)

yθ = −x sin θ + y cos θ, (2.16)

where θ is the orientation of the Gabor filter, f is the frequency of the cosine
wave, σx and σy are the standard deviations of the Gaussian envelope along the
x and y axes, respectively, and xθ and yθ define the x and y axes of the filter
coordinate frame, respectively.

0
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40

05101520253035
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10

x 10
−3

Figure 2.3: An even-symmetric Gabor filter in the spatial domain.
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The Gabor filter is applied to the fingerprint image by spatially convolving
the image with the filter. The convolution of a pixel (i, j) in the image requires
the corresponding orientation value O(i, j) and ridge frequency value F (i, j) of
that pixel. Hence, the application of the Gabor filter G to obtain the enhanced
image E is performed as follows:

E(i, j) =

wx
2∑

u=−wx
2

wy
2∑

v=−wy
2

G(u, v; O(i, j), F (i, j))N(i− u, j − v), (2.17)

where O is the orientation image, F is the ridge frequency image, N is the
normalised fingerprint image, and wx and wy are the width and height of the
Gabor filter mask, respectively.

The filter bandwidth, which specifies the range of frequency the filter responds
to, is determined by the standard deviation parameters σx and σy. Since the
bandwidth of the filter is tuned to match the local ridge frequency, then it can
be deduced that the parameter selection of σx and σy should be related with the
ridge frequency. However, in the original algorithm by Hong et al., σx and σy

were empirically set to fixed values of 4.0 and 4.0, respectively.

A drawback of using fixed values is that it forces the bandwidth to be constant,
which does not take into account the variation that may occur in the values of the
ridge frequency. For example, if a filter with a constant bandwidth is applied to
a fingerprint image that exhibits significant variation in the frequency values, it
could lead to non-uniform enhancement or other enhancement artefacts. Thus,
rather than using fixed values, I have chosen the values of σx and σy to be a
function of the ridge frequency parameter, which are defined as:

σx = kxF (i, j), (2.18)

σy = kyF (i, j), (2.19)

where F is the ridge frequency image, kx is a constant variable for σx, and ky

is a constant variable for σy. This allows a more adaptable approach to be used,
as the values of σx and σy can now be specified adaptively according to the local
ridge frequency of the fingerprint image.

Furthermore, in the original algorithm, the width and height of the filter mask
were both set to fixed values of 11. The filter size controls the spatial extent
of the filter, which ideally should be able to accommodate the majority of the
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useful Gabor waveform information. However, a fixed filter size is not optimal in
that it does not allow the accommodation of Gabor waveforms of different sized
bandwidths. Hence, to allow the filter size to vary according to the bandwidth
of the Gabor waveform, I have set the filter size to be a function of the standard
deviation parameters:

wx = 6σx, (2.20)

wy = 6σy, (2.21)

where wx and wy are the width and height of the Gabor filter mask, respec-
tively, and σx and σy are the standard deviations of the Gaussian envelope along
the x and y axes, respectively. In the above equation, the width and height of
the filter mask are both specified as 6σ, due to most of the Gabor wave informa-
tion being contained within the region [−3σ, 3σ] away from the y axis. Hence,
this selection of parameters allows the filter mask to capture the majority of the
Gabor waveform information.

2.2.6 Binarisation

Most minutiae extraction algorithms operate on binary images where there are
only two levels of interest: the black pixels that represent ridges, and the white
pixels that represent valleys. Binarisation is the process that converts a grey-
level image into a binary image. This improves the contrast between the ridges
and valleys in a fingerprint image, and consequently facilitates the extraction of
minutiae.

One useful property of the Gabor filter is that it has a DC component of
zero, which means the resulting filtered image has a mean pixel value of zero.
Hence, straightforward binarisation of the image can be performed using a global
threshold of zero. The binarisation process involves examining the grey-level
value of each pixel in the enhanced image, and, if the value is greater than the
global threshold, then the pixel value is set to a binary value one; otherwise, it is
set to zero. The outcome is a binary image containing two levels of information,
the foreground ridges and the background valleys.
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2.2.7 Thinning

The final image enhancement step typically performed prior to minutiae extrac-
tion is thinning. Thinning is a morphological operation that successively erodes
away the foreground pixels until they are one pixel wide. A standard thinning al-
gorithm [7] is employed, which performs the thinning operation using two subiter-
ations. This algorithm is accessible in MATLAB via the ‘thin’ operation under
the bwmorph function. Each subiteration begins by examining the neighbourhood
of each pixel in the binary image, and based on a particular set of pixel-deletion
criteria, it checks whether the pixel can be deleted or not. These subiterations
continue until no more pixels can be deleted.

The application of the thinning algorithm to a fingerprint image preserves the
connectivity of the ridge structures while forming a skeletonised version of the
binary image. This skeleton image is then used in the subsequent extraction of
minutiae. The process involving the extraction of minutiae from a skeleton image
will be discussed in the next chapter.

2.3 Experimental results

2.3.1 Implementation environment

All the methods and algorithms described in this dissertation were implemented
using MATLAB V6.5 on the Red Hat Linux operating system. The experiments
were performed on a Pentium 4 - 2.4Ghz with 512MB of RAM. When testing
the performance of the enhancement algorithm, the computational time was not
measured. The aim of the experimental results section is to illustrate the results
of each stage in the enhancement algorithm and to assess how well each stage
performs.

Where appropriate, the experiments for some stages were conducted on a
set of synthetic test images. Each synthetic image is formed by a series of cir-
cular patterns equally sized apart via the circsine function [14]. In addition,
synthetic noise is generated via the MATLAB function random using a normal
distribution. The orientation estimation (Section 2.3.4), ridge frequency esti-
mation (Section 2.3.5), and Gabor filtering (Section 2.3.6) stages all employ the
circsine function to generate the synthetic images, and use the random function
to generate synthetic noise.
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The majority of the real fingerprint images used in the experiments were ob-
tained from the National Institute of Standards (NIST) fingerprint data set [6].
Each image is an 8-bit grey-level image scanned at approximately 500-dpi resolu-
tion and of size 832× 768 pixels. For the purpose of conducting the experiments
in MATLAB, the images were converted from their original Wavelet Scalar Quan-
tisation (WSQ) format to the Portable Network Graphics (PNG) image format.
In addition to the NIST data set, experiments were also conducted on images
from the 2002 Fingerprint Verification Competition (FVC2002) database [15].

2.3.2 Segmentation

Figure 2.4 illustrates the results of segmenting a fingerprint image based on vari-
ance thresholding. The variance image in Figure 2.4(b) shows that the central
fingerprint area exhibits a very high variance value, whereas the regions outside
this area have a very low variance. Hence, a variance threshold is used to sep-
arate the fingerprint foreground area from the background regions. The final
segmented image is formed by assigning the regions with a variance value below
the threshold to a grey-level value of zero, as shown in Figure 2.4(c). These
results show that the foreground regions segmented by this method comprise
only of areas containing the fingerprint ridge structures, and that regions are not
incorrectly segmented. Hence, the variance thresholding method is effective in
discriminating the foreground area from the background regions.

There is a trade-off involved when determining the threshold value used to
segment the image. If the threshold value is too large, results have shown that
foreground regions may be incorrectly assigned as background regions. Con-
versely, if the threshold value is too small, background regions may be mistakenly
assigned as part of the fingerprint foreground area. Hence, a variance threshold
of 100 gives the optimal results in terms of differentiating between the foreground
and background regions.

2.3.3 Normalisation

For all images submitted to the image enhancement process: a desired mean value
of zero, and a variance of one are used for normalisation. Therefore, each image
is normalised to a predetermined level before proceeding on to the subsequent
enhancement stages. Figure 2.5 shows the results of normalising a fingerprint
image so that it has a desired mean of zero and a variance of one. The histogram
of the original image (Figure 2.5(c)) illustrates that all the intensity values lie on
the right hand side of the 0–255 scale, with no pixels in the left hand side. This
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Figure 2.4: The result of segmentation using a variance threshold of 100 and a
block size of 16× 16.

results in the image having a very low contrast, as shown in Figure 2.5(a). On the
other hand, the histogram of the normalised image (Figure 2.5 (d)) shows that the
range of intensity values has been adjusted such that there is a more balanced
distribution between the dark and light pixels. Hence, normalising the image
improves the contrast between the ridges and valleys, as shown in Figure 2.5(b).
Additionally, the histograms plots in Figure 2.5(c) and Figure 2.5(d) show that
the normalisation process does not alter the shape of the original histogram plot;
only the relative position of the values along the x axis is shifted, which means
the structure of the ridges and valleys are not changed.

2.3.4 Orientation estimation

The Gabor filtering stage of the enhancement process relies heavily on filtering
along the local ridge orientation in order to enhance the ridge structure and reduce
noise. Hence, it is important to obtain an accurate estimation of the orientation
field. As the orientation estimation stage plays a central role in the enhancement
process, I have conducted an extensive series of experiments to evaluate the
performance of the orientation estimation algorithm. A combination of both
synthetic test images and real fingerprint images were used in the experiments.
The default set of parameters specified by Hong et al. were used throughout the
experiments: an averaging block size of 16×16, and a Gaussian filter size of 5×5.
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(a) Original image (b) Normalised image
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Figure 2.5: The result of normalisation using a desired mean and variance of zero
and one, respectively.

Synthetic test image results

The first set of experiments were conducted on a set of circular synthetic images.
By using synthetic images, the pre-determined orientation values can serve as
a basis for comparison with the orientation values computed by the orientation
estimation algorithm. The accuracy of the algorithm can be quantitatively mea-
sured by the mean square error between the estimated and actual values. The
mean square error represents the difference between the actual orientation values
and the estimated orientation values in radians.

The algorithm was firstly tested on a number of well-defined synthetic images.
The results shown in Figure 2.6 were achieved using different image sizes and
wavelengths to construct the synthetic images. Visual inspection of these results
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shows that the estimated orientation field is smooth and well defined throughout
the image. Furthermore, the small mean square error values indicate that there
is minimal difference between the actual orientation values and the estimated
values from the algorithm. Thus, it can be shown that the algorithm is able to
produce accurate orientation estimates for synthetically well-defined images.

(a) Original image (b) Orientation image

(c) Original image (d) Orientation image

Figure 2.6: The estimated orientation for well-defined synthetic images. (a) A
200 × 200 synthetic image of wavelength 8. The mean square error between
the actual and estimated orientation values is 0.0003 radians. (c) A 500 × 500
synthetic image of wavelength 15. The mean square error between the actual and
estimated orientation values is 0.0002.

Experiments were then conducted with a series of random noisy elements ap-
plied to the images. Figure 2.7(b) shows that the presence of small amounts
of noise does not significantly affect the accuracy of the algorithm. However,
Figure 2.7(d) illustrates that when higher intensities of noise are applied to the
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image, the algorithm produces a disordered orientation field with a high propor-
tion of misaligned orientation vectors.

Table 2.1 shows the mean square error values with respect to increasing values
of noise intensity when applied to a 200×200 sized synthetic image of wavelength
eight. The large mean square errors indicate that the accuracy of the algorithm
decreases significantly in the presence of high intensities of noise. Therefore, it
can be shown that the algorithm can produce accurate orientation estimates in
the presence of minimal amounts of noise, but its performance deteriorates under
high levels of noise.

(a) Original image (b) Orientation image

(c) Original image (d) Orientation image

Figure 2.7: The estimated orientation for 200×200 synthetic images of wavelength
8. Random noise with standard deviation values of 0.5 (top row), and 3 (bottom
row) are applied to the images, respectively.
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Standard Deviation Mean Square Error
0.0 0.0003
0.5 0.0009
1.0 0.0032
1.5 0.0102
2.0 0.0246
2.5 0.0691
3.0 0.1722
3.5 0.2330
4.0 0.3041
4.5 0.4124
5.0 0.4262

Table 2.1: The mean square error values (radians) for varying intensities of noise.
The noise is applied to a 200× 200 sized synthetic image of wavelength 8.

Real fingerprint image results

The second set of experiments was conducted on a series of real fingerprint images.
A diverse mixture of fingerprint images was selected to assess the algorithm’s
performance under various fingerprinting conditions. The types of fingerprint
images selected include well-defined images containing various singular points,
and low quality images. In contrast to synthetic test images, when performing
the experiments on real fingerprint images, the results can only be assessed on
a qualitative scale by human inspection of the visual quality of the orientation
field. The factors used in determining the quality of the orientation include how
well the orientation vectors are oriented in respect to the direction of the ridge
flow pattern, and the smoothness of the orientation field.

Singular points are prominent features of fingerprints and are widely used for
fingerprint classification and matching; hence, it is important to obtain a reliable
estimation of the orientation field around these points. Singular points are the
points in a fingerprint where the orientation field is discontinuous and unlike
the normal ridge flow pattern, the ridge orientation varies significantly. I have
performed experiments on a variety of well-defined images containing singular
points such as the tented arch (see Figure 2.8(a)) and whorl (see Figure 2.8(b)).
From the superimposed image results of each figure, it can be seen that there is
little deviation between the actual ridge orientation and the estimated orientation
of the vectors. Thus, the algorithm produces an estimation of the orientation
vectors such that they flow smoothly and consistently with the direction of the
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ridge structures throughout the entire image. In addition, the results illustrate
that although the orientation varies significantly around the singular point, the
algorithm can still produce an accurate and smooth orientation field estimation.

(a) Tented arch

(b) Whorl

Figure 2.8: The estimated orientation for well-defined fingerprint images contain-
ing different singular points. Note that in the superimposed version of each image,
a lower contrast version of the original image is used for the background. This is
done to enhance the visibility of the orientation vectors against the background.

Well-defined images exhibit a smooth and consistent ridge flow pattern, which
allows the orientation field to be reliably extracted. In contrast, for images con-
taining elements of noise, breaks in ridges, and other defects, the ridge flow pat-
tern is not consistently defined throughout the image. In the presence of small
amounts of noise (right hand side of each image in Figure 2.9), the results indi-
cate a fairly smooth orientation field that is not greatly affected by the corrupted
elements. However, the orientation estimation gives misleading results particu-
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larly in areas where there is a large section of corruption evident (left hand side
of each image in Figure 2.9).

Figure 2.9: The estimated orientation for a low quality image containing noise
and corrupted elements.

2.3.5 Ridge frequency estimation

Together with the ridge orientation, the ridge frequency is another important pa-
rameter used in the construction of the Gabor filter. Experiments are conducted
primarily on synthetic test images to evaluate the performance of the ridge fre-
quency estimation. Note that the results for the ridge frequency values will be
presented in terms of ridge wavelength for easier interpretation of the results.
For example, if the ridge spatial frequency value is 1

8
pixels, then the results will

present this as a ridge wavelength of 8.

Additional smoothing results

A modification was made to the original wavelength estimation stage used by
Hong et al. to include smoothing of the projected waveform prior to computing
the ridge wavelength. As shown in Figure 2.10(b), the presence of noisy bumps
in the original projection result in the creation of false local minima, which mask
out the location of the true minimum points. These false minima can then lead
to an inaccurate estimation of the ridge wavelength. However, as illustrated by
Figure 2.10(c), if the projection is smoothed prior to estimating the wavelength,
then the noisy bumps are eliminated, leaving only the true local minimum points.
Hence, this additional step has shown to be useful in reducing the effect of noise
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in the projection, and can subsequently improve the accuracy of the wavelength
estimation.

Synthetic test image results

The wavelength estimation stage was firstly tested on a number of synthetic test
images. Figure 2.11 illustrates the results of estimating the ridge wavelength for
a well defined image, and Figure 2.12 shows the results of applying a series of
random noisy elements to the image. Table 2.2 shows the mean square error
values with respect to increasing values of noise intensity when applied to a
500 × 500 sized synthetic image of wavelength eight. The mean square error
represents the difference between the actual wavelength values and the estimated
wavelength values in pixels.

The results for well-defined images (see Figure 2.11(b)) and low intensity noisy
images (see Figure 2.12(b)) show that the majority of the estimated wavelength
values for each 32 × 32 block match up accurately with the actual wavelength
value of 10. Furthermore, the small mean square error values indicate that there
is minimal difference between the actual wavelength values and the estimated
wavelength values. Hence, it can be shown that the wavelength estimation is
accurate for both well-defined images and low intensity noisy images.

However, the accuracy of the wavelength estimation deteriorates when high
intensities of noise are applied to the image. Visual inspection of Figure 2.12(d)
shows that there is a large proportion of image blocks which give inaccurate
wavelength estimate values. Additionally, the large mean square errors shown in
Table 2.2 indicate that the accuracy of the estimation decreases considerably in
the presence of high levels of noise.
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Figure 2.10: The effect of smoothing the projection prior to computing the ridge
wavelength. Note how the false local minima have now been removed. (a) A
32× 32 block from a fingerprint image. (b) The original projection of the block
with a computed ridge wavelength of 5 pixels. (c) The smoothed projection with
computed ridge wavelength of 13 pixels.
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(a) Original image (b) Wavelength image

Figure 2.11: The estimated ridge wavelength for a 500× 500 synthetic image of
wavelength 8.
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(c) Original image (d) Wavelength image

Figure 2.12: The estimated ridge wavelength for 500 × 500 synthetic images of
wavelength 8. Random noise with standard deviation values of 0.5 (top row),
and 3 (bottom row) are applied to the images, respectively.
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Figure 2.13: The estimated ridge wavelength for two different fingerprint images.
(a) Mean ridge wavelength of 8.6130 pixels. (b) Mean ridge wavelength of 10.3233
pixels.
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Standard Deviation Mean Square Error
0.0 0.0100
0.5 0.0211
1.0 0.0465
1.5 0.0820
2.0 0.1702
2.5 1.1149
3.0 2.0229
3.5 4.1149
4.0 5.8543
4.5 6.1098
5.0 7.2616

Table 2.2: The mean square error values for varying intensities of noise. The
mean square error is the difference between the actual wavelength values and the
estimated wavelength values in pixels. The noise is applied to a 500× 500 sized
synthetic image of wavelength 8.

Real fingerprint image results

Conducting experiments on synthetic images provides a quantitative and accu-
rate measure of the performance of the wavelength estimation. Synthetic images
are constructed from a set of predetermined parameters, which allows compar-
isons to be made between estimated values and actual values. In contrast, when
performing experiments on real fingerprint images, the results are more difficult
to assess due to a number of reasons. Firstly, the wavelength of the ridges in a
fingerprint image is not of a fixed value and can vary across different regions in
a fingerprint. Figure 2.13 illustrates the ridge wavelength image for two different
fingerprint images. For both of these images, it can be seen that the ridge wave-
length varies throughout the image. In addition, not all fingerprints exhibit the
same average ridge wavelength and consequently, different ridge wavelength val-
ues may result from different fingerprints. For example, Figure 2.13 shows that
the average ridge wavelength values between the two images are significantly dif-
ferent from each other. Hence, only synthetic images are used for evaluating the
performance of the ridge wavelength estimation.
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2.3.6 Gabor filtering

The central part of the enhancement algorithm lies within the Gabor filtering
stage. This is the stage that performs the actual enhancement of the fingerprint
image. The purpose of the filtering stage is to enhance the clarity of the ridge
structures while reducing noise in the image. In order to assess the performance of
the Gabor filtering, I have conducted experiments on both synthetic test images
and real fingerprint images.

Parameter selection

The Gabor filter parameters σx and σy control the bandwidth of the filter, and
must be chosen carefully as they have a significant effect on the enhancement
results. The value of σx determines the degree of contrast enhancement between
ridges and valleys, and σy determines the amount of smoothing applied to the
ridges along the local orientation. Figure 2.14 illustrates the results of using
different values of σx and σy to apply the Gabor filter to a fingerprint image.
Recall from section 2.2.5 that σx and σy are determined by σx = kxF (i, j) and
σy = kyF (i, j), where F is the ridge frequency image, and kx and ky are constant
variables.

Figure 2.14(f) shows that large values of σx and σy lead to enhancement arte-
facts and a significant amount of blurring of the ridge structures. This blurring
occurs due to the over-smoothing of the image by the Gabor filter. On the other
hand, if the values are too small, the filter is not effective in removing noise from
the image as the resulting image is simply a smoothed version of the original im-
age (see Figure 2.14(b)). This smoothing of the image occurs due to the Gabor
filter evolving into the shape of a pure low pass filter (see Figure 2.14(c)).

Hence, it can be seen that the selection of σx and σy involves a trade-off
between values that are too small and values that are too large. Experiments
conducted with the Gabor filter for varying values of σx and σy have shown
that using kx = 0.5 and ky = 0.5 provides a reasonable trade-off. An example
of an enhanced image using these parameters is given in Figure 2.14(d) with
its corresponding Gabor filter in Figure 2.14(e). These results indicate a well
enhanced ridge definition and an improved contrast between the ridge and valley
structures.
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(b) Enhanced image (kx = 0.2, ky = 0.2) (c) Gabor filter (kx = 0.2, ky = 0.2)
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(d) Enhanced image (kx = 0.5, ky = 0.5) (e) Gabor filter (kx = 0.5, ky = 0.5)
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Figure 2.14: Enhancement results using the Gabor filter for different parameter
values of kx and ky.
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Synthetic test image results

The results of applying the Gabor filter to synthetic noisy images are illustrated
in Figure 2.15. Figure 2.15(c) shows that under low levels of noise, the filter
is able to effectively remove the noise from the image and enhance it to a level
that is comparable with the original image. This effective removal of noise is
partly due to the accurate estimation of the ridge orientation and frequency for
low-level noisy images, as shown in Section 2.3.5. On the other hand, when
the filter is applied to images with high intensities of noise (see Figure 2.15(f)),
the results show that the filter is not able to effectively remove the noise, and
produces a significant amount of spurious features. This poor enhancement of the
image is due to the inaccurate estimation of the ridge orientation and frequency,
which occurs under high contamination of noise, as demonstrated in the previous
sections.

(a) Original image (b) Noisy image (c) Enhanced image

(d) Original image (e) Noisy image (f) Enhanced image

Figure 2.15: Results of applying a Gabor filter with kx = 0.5 and ky = 0.5
to 500 × 500 synthetic images of wavelength 8. Random noise with standard
deviation values of 0.5 (top row), and 3 (bottom row) are applied to the images,
respectively.

31



Real fingerprint image results

Figure 2.16 illustrates the application of the Gabor filter to a medium quality
fingerprint image. The enhancement results show that the filter preserves the
continuity of the ridge flow pattern and enhances the clarity of the ridge and
valley structures. In addition to reducing noise in the image, the filter is able to
fill in small breaks that occur within ridges, as shown by the enlarged sections of
the image.

In contrast, the performance of the enhancement algorithm deteriorates when
applied to low quality images, as shown in Figure 2.17. It can be seen that the
filter has difficulty with regions of the image that are severely corrupted and de-
graded (bottom right of Figure 2.17), resulting in ineffective image enhancement.
Hence, in practice, images of low quality are typically discarded in fingerprint
identification systems. Likewise, when performing statistical experiments for this
project, I have chosen to exclude images that are of low quality.

The results in Figure 2.16(b) also show that although the clarity of the ridge
patterns are well enhanced, the enhancement at the minutiae points are slightly
blurred. The shape of the Gabor filter is designed to enhance along the ridge
lines that are parallel to one another and have a consistent orientation. However,
minutiae points occur as local discontinuities in the ridge flow pattern, which can
cause the local orientation and frequency to be inaccurately estimated. Conse-
quently, when compared to minutiae-free regions, the results of applying the filter
to regions containing minutia points is less effective in enhancing the image.

2.3.7 Binarisation and thinning

After the fingerprint image is enhanced, it is then converted to binary form, and
submitted to the thinning algorithm which reduces the ridge thickness to one
pixel wide. Figure 2.18(b) demonstrates that the global thresholding technique
is effective in separating the ridges (black pixels) from the valleys (white pixels).
The results of thinning show that the connectivity of the ridge structures is well
preserved, and that the skeleton is eight-connected throughout the image (see
Figure 2.18(c)). In particular, Figure 2.19 shows that the thinning algorithm is
able to accurately extract the skeleton of minutia points without disrupting the
continuity of the ridge flow pattern.
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(a) Original image (b) Enhanced image

Figure 2.16: Results of applying a Gabor filter with kx = 0.5 and ky = 0.5 to a
medium quality fingerprint image.

(a) Original image (b) Enhanced image

Figure 2.17: Results of applying a Gabor filter with kx = 0.5 and ky = 0.5 to a
low quality fingerprint image.
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(a) Enhanced image (b) Binary image (c) Thinned image

Figure 2.18: Results of applying binarisation and thinning to the enhanced image.
A global threshold of zero is used to perform the binarisation.

(a) Ridge ending

(b) Bifurcation

Figure 2.19: Results of applying binarisation and thinning to a ridge ending, and
a bifurcation. These two minutiae regions are from Figure 2.18.
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Figure 2.20 illustrates the result of applying binarisation and thinning to
a fingerprint image without any pre-processing stages such as image enhance-
ment. In contrast to Figure 2.18(b), the binary image in Figure 2.20(b) is not
well connected and contains significant amounts of noise and corrupted elements.
Consequently, when thinning is applied to this binary image, the results in Fig-
ure 2.20(c) show that the accurate extraction of minutiae from this image would
not be possible due to the large number spurious features produced. Thus, it can
be shown that employing a series of image enhancement stages prior to thinning
is effective in facilitating the reliable extraction of minutiae.

(a) Original image (b) Binary image (c) Thinned image

Figure 2.20: Results of applying binarisation and thinning directly to the original
image (without enhancement). A global threshold of zero is used to perform the
binarisation.
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CHAPTER 3

Minutiae Extraction and Image
Postprocessing

After a fingerprint image has been enhanced, the next step is to extract the
minutiae from the enhanced image. Following the extraction of minutiae, a final
image postprocessing stage is performed to eliminate false minutiae. This chap-
ter provides discussion on the methodology and implementation of techniques
for minutiae extraction and fingerprint image postprocessing. The first section
contains a review of existing literature in the field of minutiae extraction and
postprocessing. The next section discusses the methodology for implementing
each of these two techniques. The last section presents the results from the
experiments conducted using the implemented techniques.

3.1 Literature review

3.1.1 Minutiae extraction

The most commonly employed method of minutiae extraction is the Crossing
Number (CN) concept [1, 16, 20]. This method involves the use of the skeleton
image where the ridge flow pattern is eight-connected. The minutiae are extracted
by scanning the local neighbourhood of each ridge pixel in the image using a 3×3
window. The CN value is then computed, which is defined as half the sum of the
differences between pairs of adjacent pixels in the eight-neighbourhood. Using
the properties of the CN as shown in Table 3.1, the ridge pixel can then be
classified as a ridge ending, bifurcation or non-minutiae point. For example, a
ridge pixel with a CN of one corresponds to a ridge ending, and a CN of three
corresponds to a bifurcation.
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CN Property
0 Isolated point
1 Ridge ending point
2 Continuing ridge point
3 Bifurcation point
4 Crossing point

Table 3.1: Properties of the Crossing Number.

Other authors such as Jain et al. [9] and Ratha et al. [18] have also performed
minutiae extraction using the skeleton image. Their approach involves using a
3×3 window to examine the local neighbourhood of each ridge pixel in the image.
A pixel is then classified as a ridge ending if it has only one neighbouring ridge
pixel in the window, and classified as a bifurcation if it has three neighbouring
ridge pixels. Consequently, it can be seen that this approach is very similar to
the Crossing Number method.

3.1.2 Fingerprint image postprocessing

False minutiae may be introduced into the image due to factors such as noisy
images, and image artefacts created by the thinning process. Hence, after the
minutiae are extracted, it is necessary to employ a postprocessing stage in order
to validate the minutiae. Figure 3.1 illustrates some examples of false minutiae
structures, which include the spur, hole, triangle and spike structures [27]. It
can be seen that the spur structure generates false ridge endings, where as both
the hole and triangle structures generate false bifurcations. The spike structure
creates a false bifurcation and a false ridge ending point.

(a) Spur (b) Hole (c) Triangle (d) Spike

Figure 3.1: Examples of typical false minutiae structures.
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The majority of the proposed approaches for image postprocessing in litera-
ture are based on a series of structural rules used to eliminate spurious minutiae.
One such approach is the one proposed by Ratha et al. [18], which performs the
validation of minutiae based on a set of heuristic rules. For example, a ridge
ending point that is connected to a bifurcation point, and is below a certain
threshold distance is eliminated. This heuristic rule corresponds to removal of
the spike structure shown in Figure 3.1(d). Additional heuristic rules are then
used to eliminate other types of false minutiae. Furthermore, a boundary ef-
fect treatment is applied where the minutiae below a certain distance from the
boundary of the foreground region are deleted.

A novel approach to the validation of minutiae is the postprocessing algorithm
proposed by Tico and Kuosmanen [25]. Similar to the above techniques, this
algorithm operates on the skeleton image. However, rather than employing a
different set of heuristics each time to eliminate a specific type of false minutiae,
this approach incorporates the validation of different types of minutiae into a
single algorithm. It tests the validity of each minutiae point by scanning the
skeleton image and examining the local neighbourhood around the minutiae. The
algorithm is then able to cancel out false minutiae based on the configuration of
the ridge pixels connected to the minutiae point.

Rather than using a set of ad hoc techniques to validate the minutiae, I have
chosen to employ the algorithm employed by Tico and Kuosmanen. Further
details regarding this algorithm will be discussed in Section 3.2.2.

3.2 Methodology

This section describes the methodology for performing the minutiae extraction
and image postprocessing stages. The minutiae extraction technique I have im-
plemented is based on the widely employed Crossing Number method. For the
image postprocessing stage, I have implemented the minutiae validation algo-
rithm by Tico and Kuosmanen. Firstly, the minutiae extraction method will be
discussed, followed by details of the minutiae validation algorithm.

3.2.1 Minutiae extraction

The Crossing Number (CN) method is used to perform minutiae extraction. This
method extracts the ridge endings and bifurcations from the skeleton image by
examining the local neighbourhood of each ridge pixel using a 3×3 window. The
CN for a ridge pixel P is given by [24]:
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CN = 0.5
8∑

i=1

|Pi − Pi+1|, P9 = P1 (3.1)

where Pi is the pixel value in the neighbourhood of P . For a pixel P , its eight
neighbouring pixels are scanned in an anti-clockwise direction as follows:

P4 P3 P2

P5 P P1

P6 P7 P8

After the CN for a ridge pixel has been computed, the pixel can then be
classified according to the property of its CN value. As shown in Figure 3.2, a
ridge pixel with a CN of one corresponds to a ridge ending, and a CN of three
corresponds to a bifurcation. For each extracted minutiae point, the following
information is recorded:

• x and y coordinates,

• orientation of the associated ridge segment, and

• type of minutiae (ridge ending or bifurcation).

(a) CN = 1 (b) CN = 3

Figure 3.2: Examples of a ridge ending and bifurcation pixel. (a) A Crossing
Number of one corresponds to a ridge ending pixel. (b) A Crossing Number of
three corresponds to a bifurcation pixel.
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3.2.2 Fingerprint image postprocessing

In order to eliminate false minutiae, I have chosen to implement the minutiae
validation algorithm by Tico and Kuosmanen. This algorithm tests the validity
of each minutiae point by scanning the skeleton image and examining the local
neighbourhood around the point. The first step in the algorithm is to create an
image M of size W ×W , where M corresponds to the W ×W neighbourhood
centred on the candidate minutiae point in the skeleton image. The central pixel
of M corresponds to the minutiae point in the skeleton image, and so this pixel
is labelled with a value of −1. The rest of the pixels in M are initialised to values
of zero, as shown in Figure 3.3(a) and Figure 3.4(a). The subsequent steps of the
algorithm depend on whether the candidate minutiae point is a ridge ending or
a bifurcation.

1. For a candidate ridge ending point:

(a) Firstly, label with a value of 1 all the pixels in M , which are
eight-connected with the ridge ending point (see Figure 3.3(b)).

(b) The next step is to count in a clockwise direction, the number of
0 to 1 transitions (T01) along the border of image M . If T01 = 1,
then the candidate minutiae point is validated as a true ridge
ending.

2. For a candidate bifurcation point:

(a) Firstly, examine the eight neighbouring pixels surrounding the
bifurcation point in a clockwise direction. For the three pixels
that are connected with the bifurcation point, label them with
the values of 1, 2, and 3, respectively. An example of this initial
labelling process is shown in Figure 3.4(b).

(b) The next step is to label the rest of the ridge pixels that are
connected to these three connected pixels. This labelling is sim-
ilar to the ridge ending approach, however, instead of labelling a
single ridge branch, three ridge branches are now labelled. Let
l = 1, 2 and 3 represent the label for each ridge branch. For
each l, label with l all the ridge pixels that have a label of 0, and
are connected to an l labelled pixel. Examples of the bifurcation
labelling process are shown in Figures 3.4(c), (d) and (e).

(c) The last step is to count in a clockwise direction, the number of
transitions from 0 to 1 (T01), 0 to 2 (T02), and 0 to 3 (T03) along
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the border of image M . If T01 = 1 ∧ T02 = 1 ∧ T03 = 1, then the
candidate minutiae point is validated as a true bifurcation.

-1 -111
111

1
1

(a) (b)

Figure 3.3: Example of validating a candidate ridge ending point. T01 = 1.

3.3 Experimental results

This section presents results of performing the minutiae extraction and image
processing stages on a series of real fingerprint images. Experiments are firstly
conducted to assess how well the Crossing Number (CN) technique is able to
extract the minutiae from the skeleton image. The minutiae validation algorithm
is then evaluated to see how effective the algorithm is in detecting the false
minutiae.

3.3.1 Minutiae extraction

Figure 3.5 illustrates the results of extracting minutiae from a medium quality
fingerprint image. From the skeleton image, it can be deduced that all ridge
pixels corresponding to a CN of one and three have been detected successfully.
Additionally, the results show that there are no candidate minutiae pixels that
have been missed, and no pixels that have been falsely marked as minutiae pixels.
Hence, it can be shown that the CN technique is able to accurately detect all
valid bifurcations and ridge endings from the skeleton image.
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Figure 3.4: Example of validating a candidate bifurcation point. T01 = 1∧ T02 =
1 ∧ T03 = 1.
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Figure 3.5(b) depicts the extracted minutiae points superimposed on the orig-
inal image. Visual inspection of the image indicates that the majority of the
marked minutiae points from the skeleton image correspond to valid minutiae
points in the original image. However, there are a few cases where the extracted
minutiae do not correspond to true minutiae points in the original image.

In addition, it should be noted that in some cases the bifurcation and ridge
ending points can be difficult to distinguish between each other. Artefacts of the
enhancement stage and thinning process can occasionally result in bifurcations
being detected as ridge endings, and vice versa. Hence, in practice, most finger-
print identification systems do not make a distinction between bifurcations and
ridge endings when matching minutiae points [11].

Two examples of false minutiae are marked with boxes in Figure 3.5, and an
enlarged view of these false minutiae are shown in Figure 3.6. Figure 3.6(a) de-
picts a false minutiae point called a hole structure, which corresponds to the box
in the top left hand corner of Figures 3.5(a) and (b). Figure 3.6(b) depicts a false
minutiae point called a spur structure, which corresponds to the box in the bot-
tom right corner of Figures 3.5(a) and (b). It can be seen that the hole structure
generates two bifurcation points; however, in the original image (Figure 3.5(b))
it can be seen that these two minutiae points do not exist. Likewise, the spur
structure generates two ridge endings, which are not present in the original image.
Therefore, a postprocessing stage is required to validate the minutiae.

3.3.2 Fingerprint image postprocessing

Figure 3.7 illustrates the results of applying the postprocessing algorithm to the
skeleton image. It can be seen from Figure 3.7(a) that the algorithm is able to
cancel out the false bifurcations created by the two hole structures at the top
left hand corner of the image, and the false ridge endings created by the spur
structure. Furthermore, there are no minutiae that have been incorrectly marked
as false minutiae.

43



(a) Skeleton image (b) Original image

Figure 3.5: Results of performing minutiae extraction on a fingerprint image.
Note that minutiae points which are close to the border (within 10 pixels) are
ignored to avoid extracting minutiae which may be artefacts of the thinning
process. Ridge endings are denoted by circles, and bifurcations are denoted by
boxes.

(a) Hole structure (b) Spur structure

Figure 3.6: Enlarged view of the false minutiae from Figure 3.5(a).
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(a) Skeleton image (b) Original image

Figure 3.7: Results of performing minutiae validation. The false minutiae are
denoted by asterisks. Ridge endings are denoted by circles, and bifurcations are
denoted by boxes.

Details of how the algorithm is able to cancel out these two types of minutiae
are shown in Figure 3.8. Each bifurcation point in the hole structure can be
eliminated due to the number of zero to two transitions (T02) along the border of
the image window not being equal to one. The spur structure contains only two
ridge pixels in the centre of the image window, which means the ridge branch
connected to the minutiae is not long enough to reach the window border. Hence,
the ridge ending points cannot be validated as true minutiae, since the number
of zero to one transitions (T01) along the border of the window is zero.

Previous experiments conducted for different sized neighbourhood windows
have shown that a window of size 23×23 is most effective in eliminating the false
minutiae. If the window size is too small, results have shown that the algorithm
is not effective in cancelling out the false minutiae. Conversely, if the window
size is too large, then the algorithm may incorrectly cancel out minutiae.
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Figure 3.8: An example of how the postprocessing algorithm cancels out the false
minutiae. A window size of 23× 23 is used. (a) T01 = 1 ∧ T02 = 1 ∧ T03 = 0. (b)
T01 = 0.

46



CHAPTER 4

Statistics of Fingerprints

This chapter presents some preliminary results on the statistics of fingerprints.
In previous chapters, I have discussed and implemented a set of techniques for
fingerprint image enhancement and minutiae extraction. The collection of ex-
perimental data is facilitated by the use of these implemented techniques. The
following three types of statistical data are collected and presented:

• Minutiae density (Section 4.1),

• Shortest distance between neighbouring minutiae (Section 4.2), and

• Ridge wavelength (Section 4.3).

In contrast to the widely studied and published techniques on fingerprint
image enhancement and minutiae extraction, there is limited literature available
on the statistics of fingerprints. An examination of the literature available has
found that for the three types of statistical data collected in this project, previous
work has been done only in the field of minutiae density. Therefore, the minutiae
density results obtained in this study can be compared with previous studies.

All experiments discussed in this chapter are conducted on a set of 30 finger-
prints images of size 832 × 768 pixels. This fingerprint data set comprises of 15
images containing the fingerprint whorl pattern, and 15 images containing the
fingerprint loop pattern. Whorls and loops are chosen, as they encompass the
two main classes of fingerprint patterns. Similar to the previous chapters, these
images were obtained from the NIST fingerprint data set.

For each section, I firstly discuss the methods for collecting the statistical
data, followed by the experimental results. Note that the primary aim of the
project is to implement a series of techniques for fingerprint image enhancement
and minutiae extraction. Hence, the statistical results in this chapter are only
preliminary results, such that full analysis of the results is reserved for future
work.
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4.1 Minutiae density

4.1.1 Methodology

Each image is firstly processed using the implemented image enhancement algo-
rithm, and the minutiae are then extracted from the enhanced image. The next
step is to count for each fingerprint image, the total number of minutiae and the
total number of foreground pixels. The foreground pixels are distinguished from
the background pixels by segmenting the fingerprint into foreground and back-
ground regions, as discussed earlier in Section 2.2.1. The number of minutiae is
divided by the number of foreground pixels, which gives the minutiae density in
terms of minutiae per pixel2. Given that the fingerprint images are scanned at
19.7 pixels per mm, the measurement units are then converted into the standard
units of minutiae per mm2.

4.1.2 Experimental results

Experiments conducted over a sample of 30 fingerprint images indicate a mean
minutiae density of 0.204 minutiae per mm2 with a standard deviation of 0.0285.
Results from previous studies on the minutiae density of fingerprints are shown
in Table 4.1. Additionally, Figure 4.1 depicts a Gaussian distribution plot for
each of the four data sets shown in Table 4.1. These results show that the
mean minutiae density of 0.2040 observed in this study, falls within the range of
values collected from previous studies. However, the standard deviation value is
significantly larger than the values shown in previous results.

The large difference between standard deviation values can be attributed to
various factors such as the sample size used, and the method employed to collect
the data. For example, the previous studies have used human inspection of the
fingerprint image, where manual measurement is used to count the number of
minutiae contained within a circular sampling region. Consequently, this method
is more precise in measuring the minutiae density. In contrast, the data collected
for this study is automated without any human intervention, which may lead to
a greater variation in density values.
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Data Set Source of Data Sample Mean Minutiae Density Standard
Number Size (per mm2) Deviation

1 Dankmeijer et al. [3] 1000 0.1900 0.0069
2 Stoney et al. [23] 412 0.2230 0.0045
3 Kingston [13] 100 0.2460 0.0084
4 Current study 30 0.2040 0.0285

Table 4.1: Comparison of the observed minutiae densities with previous studies.
The current results are shown on the bottom row of the table.
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Figure 4.1: Gaussian distribution plot for each data set of minutiae density values
from Table 4.1. The current results are depicted by the solid line curve.
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4.2 Distance between neighbouring minutiae

4.2.1 Methodology

The focus of this section is to collect some statistical data on the distance between
neighbouring minutiae points. Each image from the data set is firstly enhanced,
and the minutiae are then extracted from the enhanced image. The next step
is to find a method of calculating the distance from one minutiae to its nearest
neighbouring minutiae point. Given that the minutiae points do not form a
structured topology, the Delaunay triangulation method can be used to create a
triangular grid for the scattered minutiae points. This method can be accessed in
MATLAB via the delaunay function. The Delaunay triangulation creates a set
of triangles such that the circumscribed circle of each triangle does not contain
any other minutiae points. Therefore, the vertex of a triangle corresponds to
a minutiae point, and the edge of the triangle joins together two neighbouring
minutiae points.

The Delaunay triangulation for a sample set of minutiae points is shown in
Figure 4.2(a). Furthermore, I have performed the Delaunay triangulation for
specific types of minutiae, such as bifurcations and ridge endings. Figure 4.2(b)
depicts the Delaunay triangulation for ridge ending points, which allows the
distance to be calculated between one ridge ending and its nearest ridge ending
neighbour. Likewise, Figure 4.2(c) depicts the triangulation plot for bifurcation
points.
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(a) All minutiae data (b) Ridge ending data (c) Bifurcation data

Figure 4.2: Example plot of the 2-D Delaunay triangulation for a set of minutiae
points from a image. (a) Both types of minutiae points are used for this plot
(bifurcations and ridge endings). (b) Only ridge ending points are used. (c) Only
bifurcation points are used.
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The next step is to calculate the distance between neighbouring minutiae.
For each vertex point, the distance between itself and each adjoining vertex is
measured. This is analogous to calculating the distances between each minutiae
point and its neighbours. The smallest value from the resulting list of distance
values is then chosen, which gives us the distance from the minutiae to its nearest
neighbouring point.

4.2.2 Experimental results

Table 4.2 summarises the results from experiments conducted on a sample of
30 fingerprint images. The sample size figures shown in the table represent the
total number of distances calculated between a minutiae point and its nearest
neighbour. Additionally, the histogram plots for each of the data types from
the table are shown in Figure 4.3. It can be seen that the results exhibit large
standard deviation values. This suggests that the shortest distance values vary
greatly for both types of minutiae, and that the configuration of a group of
neighbouring minutiae is not evenly distributed throughout a fingerprint image.
In addition, further work can be done to fit a probability distribution model to
this set of observed data, which can provide further insight into the statistical
nature of distances between neighbouring minutiae points.

Data Type Sample Size Mean Distance (pixels) Standard Deviation
Minutiae Data 1894 24.9594 12.8920
Ridge Ending Data 879 34.0183 21.0203
Bifurcation Data 1015 32.6584 17.4864

Table 4.2: Summary of results for calculating the shortest distance between neigh-
bouring minutiae.
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(a) All minutiae data (b) Ridge ending data (c) Bifurcation data

Figure 4.3: Histogram plot of the shortest distance values between neighbouring
minutiae. The distance values are from Table 4.2 and are measured in pixels. (a)
All minutiae data is used for the plot. (b) Triangulation of only the ridge ending
points. (c) Triangulation of only the bifurcation points.

4.3 Ridge wavelength

4.3.1 Methodology

The focus of this section is to gain some insight into the statistical characteristics
of the ridge wavelength in a fingerprint image. The ridge wavelength data is
collected by performing the ridge frequency estimation method discussed in Sec-
tion 2.2.4 to a set of fingerprint images. Given that the wavelength is estimated
block-wise, the ridge wavelength data for each 32 × 32 block of each image is
recorded. Note that only the blocks that are part of the foreground region of the
fingerprint image are considered. These ridge wavelength values are then used to
form the results set used for statistical analysis.

4.3.2 Experimental results

Experiments were conducted to collect data on the ridge wavelength values of a
set of 30 fingerprint images. A total sample size of 5510 ridge wavelength values
were collected, with each sample corresponding to the ridge wavelength in each
32 × 32 block of each image. A mean ridge wavelength of 9.2732 pixels was
observed with a standard deviation of 1.8985. The corresponding histogram plot
for these results is depicted in Figure 4.4(a). From this plot, it can be seen that
the peak of the histogram plot lies approximately in the middle of the histogram
curve. The position of this peak point along the histogram x axis is within the
ridge wavelength range of eight to nine, which is comparable to the mean ridge
wavelength value.
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Furthermore, the degree to which the ridge wavelength diverges away from this
middle peak is fairly consistent for both sides of the peak.

This observed shape of the histogram plot suggests that the ridge wavelength
data may follow a normal distribution. Hence, I have chosen to fit a normal
density curve to the histogram plot as a guide to how well the data fits in with
the curve. The histogram plot with a superimposed normal density curve is shown
in Figure 4.4(b). The shape of the normal curve is determined by the mean and
standard deviation of each data set. Visual inspection of the plot shows that
although the general shape of the histogram data is similar to the normal density
curve, there are outlying areas of the histogram that do not fall within the area
of the normal density curve.

As a more accurate measure in testing the normality of the data, I have em-
ployed the use of normal probability plots via the MATLAB function normplot.
I will only be discussing the basic principles of normal probability plots, further
details on normal probability plots can be found in textbooks on statistics [2].
The normal probability plot for the ridge wavelength data is depicted in Fig-
ure 4.5. The plot consists of two main components: a fitted normal line which is
represented by the straight dashed line, and the sample data points denoted by
the + symbol.

The normality of the data can be assessed by seeing how well the plotted
points fits the normal line. If the plot is linear and fits the line well, then the
data can be modelled by a normal distribution. However, Figure 4.5 shows that
although the start of the plot fits the line well, the rest of the plotted points
are not linear and appear to bend to the right of the normal line. Hence, the
observed ridge wavelength data does not quite follow a normal distribution.
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Figure 4.4: Histogram plot of the ridge wavelength values using a mean of 9.2732
with a standard deviation of 1.8985.
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Figure 4.5: Normal probability plot of the ridge wavelength values.
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CHAPTER 5

Conclusion and Future Work

The primary focus of the work in this project is on the enhancement of fingerprint
images, and the subsequent extraction of minutiae. Firstly, I have implemented a
series of techniques for fingerprint image enhancement to facilitate the extraction
of minutiae. Experiments were then conducted using a combination of both
synthetic test images and real fingerprint images in order to provide a well-
balanced evaluation on the performance of the implemented algorithm. The use
of synthetic images has provided a more quantitative and accurate measure of the
performance. Whereas real images rely on qualitative measures of inspection, but
can provide a more realistic evaluation as they provide a natural representation
of fingerprint imperfections such as noise and corrupted elements.

The experimental results have shown that combined with an accurate estima-
tion of the orientation and ridge frequency, the Gabor filter is able to effectively
enhance the clarity of the ridge structures while reducing noise. In contrast, for
low quality images that exhibit high intensities of noise, the filter is less effec-
tive in enhancing the image due to inaccurate estimation of the orientation and
ridge frequency parameters. However, in practice, this does not pose a significant
limitation as fingerprint matching techniques generally place more emphasis on
the well-defined regions, and will disregard an image if it is severely corrupted.
Overall, the results have shown that the implemented enhancement algorithm is
a useful step to employ prior to minutiae extraction.

The Crossing Number method was then implemented to perform extraction
of minutiae. Experiments conducted have shown that this method is able to ac-
curately detect all valid bifurcations and ridge endings from the thinned image.
However, there are cases where the extracted minutiae do not correspond to true
minutia points. Hence, an image postprocessing stage is implemented to validate
the minutiae. The experimental results from the minutiae validation algorithm
indicate that this additional postprocessing stage is effective in eliminating vari-
ous types of false minutiae structures.
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In combination with the implemented techniques for image enhancement and
minutiae extraction, preliminary experiments on the statistics of fingerprints were
conducted on a sample set of fingerprint images. Three types of statistical data
were collected, which include minutiae density, distance between neighbouring
minutiae, and ridge wavelength. Although full analysis of the statistical data
was not conducted, the results presented in this dissertation can be used as a
basis for future work.

Overall, I have implemented a set of reliable techniques for fingerprint image
enhancement and minutiae extraction. These techniques can then be used to
facilitate the further study of the statistics of fingerprints. In addition, these
techniques can be also employed in other fingerprinting applications such as fin-
gerprint matching and classification.

Further work which can be carried out include the following:

• An investigation into a filter whose primary aim is to specifically enhance
the minutia points. This project has followed the approach adopted by
most previous work where the emphasis is on enhancing the ridge structures
using Gabor, or Gabor-like filters. However, while the ridge structures are
enhanced, this approach has shown to be less effective in enhancing areas
containing minutiae points, which are the points of main interest.

• To perform the statistical experiments used in this project on a larger sam-
ple size, and to conduct a full analysis of the observed results.

• Further study into the statistical theory of fingerprint minutiae. In particu-
lar, the Tu and Hartley [26] approach can be investigated to determine the
number of degrees of freedom within a fingerprint population. These results
can then be used to help us better understand the statistical uniqueness of
fingerprint minutiae.
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APPENDIX A

Original research proposal

Title: Fingerprint Image Enhancement and Minutiae Extraction

Author: Raymond Thai

Supervisor: Dr Peter Kovesi

Background

Fingerprints are the oldest form of biometric identification. Modern fingerprint
based identification is used in forensic science, and in biometric systems such as
civilian identification devices. Despite the widespread use of fingerprints, there
is little statistical theory on the uniqueness of fingerprint minutiae.

A fingerprint is formed from an impression on a surface of composite curve
segments. A ridge is defined as a single curved segment, and a valley is the region
between two adjacent ridges. The minutiae, which are the local discontinuities in
the ridge flow pattern, provide the details of the ridge-valley structures, like ridge-
endings and bifurcations. There are 50 to 150 minutiae on a single fingerprint
image. Features such as the type, direction, and location of minutiae are taken
into account when performing minutiae extraction [1].

The work of F. Galton [2] defined a set of Galton Features for fingerprint
identification, which since then, has been refined and extended to include addi-
tional types of fingerprint features. However, most of these features are not used
in automatic fingerprint identification systems. Instead the set of minutiae types
are restricted into only two types, ridge endings and bifurcations, as other types
of minutiae can be expressed in terms of these two feature types. Ridge endings
are the points where the ridge curves terminates, and bifurcations are where a
ridge splits from a single path to two paths at a Y-junction. In this project, we
will be dealing mainly with ridge endings and bifurcations.
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Fingerprint images are rarely of perfect quality. They may be degraded and
corrupted with elements of noise due to many factors including variations in skin
and impression conditions. A critical step in studying the statistics of fingerprint
minutiae is to reliably extract minutiae from the input fingerprint images. In
automated fingerprint identification systems, image enhancement techniques are
often employed prior to minutiae extraction to obtain a more reliable estimate of
minutiae locations.

There are various types of approaches proposed in literature for both image
enhancement, and minutiae extraction from fingerprints. The literature on these
techniques will be examined and reviewed in determining the best approach to de-
velop for this project. In particular, the fingerprint image enhancement algorithm
employed by Hong et al. [3] will be evaluated and implemented to understand
how the enhancement algorithm works and how well it performs.

Once a reliable minutiae extraction technique has been implemented and
tested, this can be used as the basis for statistical analysis of fingerprint minutiae.
The work of Tu and Hartley [4] and Pankanti et al. [5] can be examined, in which
a statistical framework for analysing system performance has been presented. Tu
and Hartley define a means of forming a binary code from a set of fingerprint
features and then performing a set of matching experiments on the database
to estimate the number of degrees of freedom within the fingerprint population.
This information can then be used to investigate the effect of varying the number
of minutiae used to make an identification.

Aim

The initial aim of this project is to implement in MATLAB, a set of reliable
techniques for fingerprint image enhancement and minutiae extraction. The per-
formance of these techniques will be evaluated on a fingerprint data set obtained
from the National Institute of Standards (NIST). Existing techniques (such as
MINDTCT from NIST) can then be used as benchmarks for performance com-
parison.

In combination with these developed techniques, statistical experiments can
then be performed on the fingerprint data sets. The results from these experi-
ments can be used to help us better understand what is involved in determining
the statistical uniqueness of fingerprint minutiae.

The ideal hypothesis that this project would aim to test is whether 12 minu-
tiae points is enough for an identification (12 points has been the traditional
benchmark for identification). Although it is not expected that the work in this
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project will reach the stage of being able to fully test this hypothesis, we hope
that the results of this project will contribute towards answering this question.

Method

A rough task breakdown for this project is as follows:

• Examine and review available literature on image enhancement and minu-
tiae extraction techniques, including the NIST Fingerprint Image Software.

• Develop a series of image enhancement techniques to aid the minutiae ex-
traction process.

• Develop a set of reliable techniques to extract the minutiae from fingerprint
images.

• Evaluate the performance of the techniques using the fingerprint data set
obtained from NIST.

• Use existing techniques as the benchmark for comparing the performance
of the technique developed.

• After reliable minutiae detection techniques have been developed and tested,
then statistical analysis experiments on the fingerprint data set can be per-
formed and documented.

Software and hardware requirements

This project will require a (reasonably fast and reliable) computer running in the
Linux operating system environment.
As the majority of the programming and experimentation work in this project
will be done using MATLAB, a recent version of MATLAB will be required.

62



Bibliography

[1] U. Halici, L. C. Jain, and A. Erol. An introduction to fingerprint recognition.
In, L.C. Jain, U. Halici, I. Hayashi, S.B. Lee, and S. Tsutsui, editors, Intel-
ligent Biometric Techniques in Fingerprint and Face Recognition, pp. 3–34,
CRC Press, Florida, 1999.

[2] F. Galton. Finger Prints. Mcmillan, London, 1892.

[3] Lin Hong, Yifei Wan, and Anil K. Jain. Fingerprint image enhancement: Al-
gorithm and performance algorithm. IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 20, no. 8, pp. 777–789, May 1998.

[4] Peter Tu and Richard Hartley. Statistical significance as an aid to system
performance evaluation. ECCV (2) 2000, pp. 366–378, 2000.

[5] Sharath Pankanti, Salil Prabhakar, and Anil K. Jain. On the individuality
of fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 24, no. 8, pp. 1010–1025, 2002.

63


