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a b s t r a c t

A novel method for parameterizing the morphology of seafloor ripples with fingerprint analysis

numerical techniques is presented. This fully automated analysis tool identifies rippled areas in two-

dimensional imagery of the seafloor, and returns ripple orientation and wavelength as well as a new

morphological parameter, the spatial density of ripple defects. In contrast to widely used manual and

spectral parameterization methods, this new technique yields a unique probability distribution for each

derived parameter, which describes its spatial variability across the sampled domain. Here we apply

this new analysis technique to synthetic and field collected side-scan sonar seafloor images in order to

assess the methods capacity to define bed geometry across a wide range of simulated and observed

morphological conditions. The resulting orientation and wavelength values compare favorably with

those of the existing manual and spectral parameterization methods, and are superior under

environmental conditions characterized by low signal to noise ratios as well as high planform ripple

sinuosity. Furthermore, the resulting ripple defect density values demonstrate correlation with ripple

orientation, wave direction, and the Shields parameter, which is consistent with recent investigations

that have theoretically linked this parameter to hydrodynamic forcing conditions. The presented

fingerprint analysis method surpasses the capacity of existing methods for ripple parameterization and

promises to yield greater insight into theoretical and applied problems associated with the temporal

and spatial variability of ripple morphology across a wide spectrum of marine environments.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Small-scale bedforms known as ripples are ubiquitous in
nearshore coastal systems and occur at depths where shear stress
generated by wave and current energy is sufficient to initiate
transport of unconsolidated sediment. Over finite time periods,
causality between wave and current induced hydrodynamic
forcing at the bed and coincident ripple morphology is known
to be bidirectional (Nielsen, 1981; Wright, 1995). A number of
laboratory as well as field investigators have empirically estab-
lished and analytically modeled this relationship for a variety
of environments (see summaries by Wiberg and Harris, 1994;
Doucette, 2002; and Soulsby and Whitehouse, 2005). These model-
ing efforts, especially field based ones, were initially limited by the
observational challenges of accurately recording bed geometry and
coincident hydrodynamic conditions over sustained time periods
(Davies and Thorne, 2008). More recent developments in acoustic
oceanographic instrumentation have substantially improved obser-
vational capacity resulting in ripple models with greater accuracy
ll rights reserved.

: þ1 302 831 4158.
and sophistication (Davies and Villaret, 2002; Traykovski, 2007; Hay,
2008; Tang et al., 2009). Within the last decade, the development
and commercial availability of acoustic Doppler current profiler and
acoustic Doppler velocimeter technology has allowed for precise
observation of water motion associated with the bottom boundary
layer. The resulting acoustic backscatter data is processed with
standardized physical theories of nearbed turbulence, which yield
high-resolution time series observations of parameters, such as flow
direction and speed, which quantitatively describe the hydrody-
namic processes acting on the bed. Similar developments in acoustic
backscatter instrumentation, specifically the side-scan sonar (Rubin
et al., 1983; Hay and Wilson, 1994; Irish et al., 1999; Hay and
Mudge, 2005), have allowed for precise observation of seafloor
bedform morphology (Thorne and Hanes, 2002). However, in con-
trast to the hydrodynamic instrumentation, there is not yet a
standardized method for processing side-scan acoustic backscatter
data in order to yield parameters that describe the fundamental
physical characteristics of bed morphology. Therefore, it is impera-
tive to determine which parameters are most representative of
ripple morphology, and the best way to extract those parameters
from side-scan data, in order to accurately understand ripple
evolution and validate modeling of ripple response to hydrodynamic
forcing. Our objective here is to present an improved method for
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deriving established ripple morphology parameters (ripple wave-
length and orientation), as well as to introduce a new parameter
(ripple defect density), which is uniquely representative of rippled
bed state.

Investigators have generally extracted three fundamental para-
meters from seafloor images in order to define bedform morphol-
ogy: ripple height, wavelength, and the orientation of ripple crests.
These three parameters are important, because a significant body of
research indicates a relationship between them and the transport
vector of flow (Nielsen, 1981; Grant and Madsen, 1982; Mogridge
et al., 1994; Li et al., 1996; Wiberg and Harris, 1994). Investiga-
tions employing two-dimensional optical or acoustic imagery of
the seafloor have generally considered only ripple wavelength
and orientation as ripple height cannot be derived from planform
observations without the use of specialized methods and appara-
tuses (Li and Amos, 1998; Traykovski et al., 1999; Tang et al., 2009).

Some investigations involving the comparison of hydrodynamic
flow and bedform characteristics have relied on morphologic para-
meters derived from manual qualitative interpretation of seafloor
images (Traykovski et al., 1999; Hay and Mudge, 2005). This
methodology is subject to a number of sources of data uncertainty.
First, manual measurements of bedform wavelength and orientation
rely on individual perception and interpretation of a seafloor image,
and because of this, observations can show significant variability
between practitioners (Englert, 2010). Additionally, repeated proces-
sing of the same dataset multiple times by a single operator
produces variability between measurements indicating that manual
observations of seafloor morphology may not be reliably repeatable.
Furthermore, this method requires the visual derivation of a single
wavelength and orientation value for an entire spatial domain, thus
reducing a complex surface to a single value in an unsystematic
manner. A rippled surface can only be accurately defined with a
single wavelength and orientation value if they are homogeneously
two-dimensional and field observations suggest that such a bed
state rarely, if ever, exists. Rather, bedform morphology often
exhibits a distributed range of wavelengths and orientations across
the observed domain. These parameters can best be described
through a statistical treatment of a population of spatially distrib-
uted observations, rather than single representative value deter-
mined visually. However, when field data is considered it quickly
becomes obvious that manual extraction of all wavelength and
orientation data from an image of a ripple domain, in order to build
a statistically significant population of observation for statistical
analysis, is not a practical processing option.

To overcome the limitations of manual analysis, investigators
have developed an automated method to extract ripple wavelength
and orientation parameters from the power spectra of seafloor
images transformed into the frequency domain. The most common
approach is the transformation of ripple image data from a one- or
two-dimensional spatial domain into the frequency domain, where
orientation and wavelength data are derived from the relative
Fig. 1. (A) An example rotary sonar image (axes in meters). (B) The image samplin

(Voulgaris and Morin, 2008). (C) The image sampling scheme used for fingerprint anal
positions of power spectral peaks (Voulgaris and Morin, 2008;
Cheel and Hay, 2008; Maier and Hay, 2009). For one-dimensional
analysis, the acoustic backscatter amplitude along a single azimuthal
direction, typically orthogonal to the direction of expected ripple
crest, is transformed to radial power spectra, with spectral peaks
indicating ripple frequency and thus wavelength (Cheel and Hay,
2008). For two-dimensional analysis, a raster image of the bedform
domain is preprocessed to an appropriate size and resolution. A
two-dimensional frequency transform such as the Fourier (Voulgaris
and Morin, 2008) or the Radon (Maier and Hay, 2009) is carried out
on the data, resulting in the generation of a two-dimensional power
spectrum projected in frequency space. The resultant plot exhibits a
series of spectral peaks, which are symmetrical about the origin. The
distance between the origin and spectral peak of greatest magnitude
is representative of the ripple wavelength in the domain, while an
azimuthal bearing from the origin to the same spectral peak is
representative of the orientation of the ripple crest in the domain.
For both one- and two-dimensional frequency transforms, the shape
of the spectral peak represents the total variability in bed morphol-
ogy across the domain, and the uncertainty of the observations,
which may arise through instrumental error or natural processes
such as the presence of suspended sediment in the water column. A
very tall and narrow spectral peak would represent a bed with
minimal variability (two-dimensional ripples) and/or lower uncer-
tainty, while a shorter and wider spectral peak would represent a bed
with high variability (sinuous ripples) and/or greater uncertainty.

The frequency-transform method for deriving wavelength and
orientation parameters from ripples represents a significant
improvement over the manual approach in a number of ways.
First, it is automated, allowing for the processing of images in a
more efficient and practical way than the manual method.
Additionally it does not rely on human visual interpretation of
images to assign parameters; therefore, it is free of individual
observational bias and is standardized as well as repeatable.
Finally, the frequency-transform method expresses bed morphol-
ogy as frequency spectra, the shape of which represents uncer-
tainty as well as variability across the spatial domain and can be
quantified with statistical analysis. Although the frequency-trans-
form method represents a significant improvement over the
manual method it nonetheless has limitations. Chief among these
is the fact that the morphological, environmental, and instrumental
factors contributing to the power spectra shape are not independent,
and cannot be deconvolved. The spectral shape is representative of
the total morphological variability and uncertainty in the domain;
however, the contribution of each cannot be independently extracted,
thus there is no way to quantify the variability of individual
parameters such as orientation and wavelength. Additionally, the
frequency-transform method requires that a square image domain be
sampled, which often necessitates the inclusion of imagery from non-
rippled or obscured areas such as an acoustic shadow from instru-
mentation (Fig. 1B). This problem can be overcome through careful
g scheme used for the spectral method, with 8 individual sub-sampled squares

ysis method based upon the filtering of non-rippled portions of the domain.



Fig. 2. Mid-Atlantic Bight. Locations of instrument deployments marked with

white circles.
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manual sub-sampling of an image; however, this process negates
many of the advantages spectral methods have over manual method
including automation and standardization. The prescribed inclusion
of this data, which yield no information about ripples, leads to higher
levels of spectral noise, which obscures the desired morphological
signal and introduces a greater degree of uncertainty in the results.

Here we introduce a more sophisticated method for parameter-
ization of rhythmic bedform morphology and demonstrate, through
comparison of both synthetic and field results, its capacity to address
the shortcomings of both the manual and the spectral approaches.
This novel method utilizes image-processing routines developed
within the biometrics research community for the parameterization
and identification of fingerprints. The challenges associated with
fingerprint analysis and ripple morphology parameterization are
very similar. In both cases, the goal is to process a two-dimensional
representation of a three-dimensional ridge and valley surface in
order to isolate and catalog the fundamental defining morphological
parameters. An existing numerical technique for fingerprint analysis
was modified for application to rippled seafloor imagery. Modifica-
tions primarily address the subtle differences between seafloor and
fingerprint images such as acoustic signal attenuation, and the fact
that in a fingerprint image grayscale intensity is a function of surface
elevation, while in a side-scan sonar image it is a function of surface
slope relative to the acoustic transducer as well as distance from the
transducer (sonar range). In contrast to existing approaches, the
fingerprint analysis method assigns a localized orientation and
wavelength value at each pixel of the domain, creating a unique
population of spatially distributed observations for each parameter.
These individual distributions can be addressed statistically in order
to define a representative value for each parameter (mean or
median) and to quantify the variability of that parameter across
the sampled domain (standard deviation). Furthermore, because
parameters are computed for a localized area around each pixel,
the resulting values can be selectively filtered to remove data from
areas that fail to meet predefined criteria for rippled morphology,
such as flat seafloor or areas obscured by acoustic shadows from
instrumentation or mooring equipment (Fig. 1C). This spatial filtering
process significantly reduces the noise and uncertainty present in the
extracted wavelength and orientation values. Finally, the fingerprint
analysis technique introduces the ability to derive parameters in
addition to orientation and wavelength from ripple imagery. Most
promising is the capacity to determine the location, quantity, and
relative position of minutiae structures (ripple terminations and
bifurcations) otherwise known as ‘‘ripple defects’’ (Huntley et al.,
2008). Investigators have theoretically related the density of ripple
defects within a rippled seafloor domain to bedform migration rates
(Werner and Kocurek, 1999), as well as the temporal evolution of
ripple height and wavelength (Huntley et al., 2008). Others have
noted high concentrations of defects in anorbital ripple fields
reorienting after rapid changes in wave direction (Maier and Hay,
2009). Finally, Kocurek et al. (2010) suggest that defect creation and
migration can play a significant role in regulating the rate and
direction of bed evolution between initial and more developed states.
2. Methods

2.1. Data collection and instrumentation

Field observations of seafloor morphology and coincident hydro-
dynamic flow on (1) a prograding ebb-tidal shoal (Hen and Chickens
Shoal, DE) and (2) a transgressive barrier shoreface (Cedar Island, VA)
(Fig. 2) were recorded for durations of 23 and 40 days, respectively,
through conditions that varied from fair weather to significant
tropical and extratropical storm events. Both locations are character-
ized by medium grained unconsolidated sand (d50ffi0.25 mm), and
the instrument deployment depths were 7.4 m and 9.2 m, respec-
tively. Hen and Chickens Shoal is located adjacent to the mouth of the
Delaware Bay and is characterized by significant wave and tidal
current energy, which generally alternate in dominance on a semi-
diurnal time scale. Observed waves and flood/ebb currents both
consistently produce bed shear stresses capable of transporting local
sediment and reshaping the seafloor morphology. The relatively high
frequency of alternation in the dominant energy source within the
system results in an extremely dynamic bed that rarely attains
morphologic equilibrium with any given hydrodynamic regime (i.e.
never fully wave or current dominated). The Cedar Island transgres-
sive barrier shore face is dominated by wave energy, which is
consistently much greater than that of the current. Wave shear stress
episodically exceeds the threshold required to mobilize sediment, so
that the bed state alternates between being dynamically controlled
and relict. Both locations consistently exhibit ripple morphology,
which evolves in form and magnitude over time.

Field instrumentation consisted of a seafloor frame outfitted
with a Nortek (Oslo, Norway) upward looking acoustic wave and
current (AWAC) profiler, and an Imagenex (Port Coquitlam,
Canada) tilt head rotary imaging side-scan sonar linked to an
ASL (Sidney, Canada) IRIS power source and data logger system.
The upward looking 1 MHz AWAC was deployed at 0.45 m above
the bed and recorded Doppler current vector values from 0.5 m
depth bins every 5 min for the duration of both deployments. The
AWAC was equipped with acoustic surface tracking (AST) which
directly measures the free surface elevation with an upward
pointing single beam sonar during wave burst, which occur for
17 min once an hour. The resulting time series was analyzed to
derive direct measurements of significant wave height and period,
and then combined with near surface orbital velocity measure-
ments to derive directional wave spectra. Current velocity values
have an instrumental uncertainty of 1 cm/s, an accuracy of 1% of the
measured value 70.5 cm/s. Wave height values have an instru-
mental uncertainty of 1 cm and an accuracy of 1% of the measured
value. Wave direction values have an instrumental uncertainty of
0.11 and an accuracy of 21. The Imagenex 2.25 MHz rotary imaging
side-scan sonar was located on the same frame as the AWAC for
both deployments. The acoustic aperture was positioned 1 m above
the bed with a downward tilt of 171 from the vertical. The sonar
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completed four 3601 revolutions once an hour. Each revolution
generating an acoustic backscatter image with a median resolution
of 2.4 cm2 and a seafloor coverage of 254 m2. An ASL data logger
running IRIS command and control software provided power, control,
and data storage for the rotary sonar during both deployments.

Field observations of seafloor morphology across a sorted bedform
feature were collected at a shallow (Hffi12 m) inner-shelf sight
(Martha’s Vineyard Coastal Observatory, Massachusetts). The location
is characterized by bimodal sediment grain size distribution, and the
dominant morphological forcing mechanism is episodic wave events,
which result in significant bed evolution (Mayer et al., 2007). A
0.25 km2 mosaic acoustic image of the seafloor was collected with a
Marine Sonic 900 Khz side-scan sonar mounted on a Gavia autono-
mous underwater vehicle operating 6 m above the bed. A detailed
description of the data collection methods and instrumentation is
presented by Trembanis et al. (2010).
2.2. Hydrodynamic data processing

Observed hydrodynamic conditions were processed and pre-
sented in order to qualitatively assess if ripple geometry and
ripple defect occurrence as determined by the fingerprint analysis
method correlate with wave direction, and the Shields parameter,
as indicated by a numerous investigations (Wright, 1995; Soulsby
and Whitehouse, 2005; Huntley et al., 2008; Werner and Kocurek,
1999; Maier and Hay, 2009; Kocurek et al., 2010). Hydrodynamic
data collected with the AWAC profiler is imported with the
instrument manufacturer’s software and converted into time
series of flow magnitude and direction in a geographical reference
plane. The current induced forces acting on the bed are para-
meterized with the mean current Shields parameter:

yc ¼
tc

ðrs�rÞgd
ð1Þ

where rs and r are the density of the sediment and water,
respectively, g is the gravitational acceleration, d is the sediment
median grain size, and tc is the bed shear stress due to current,
calculated using the quadratic stress law:

tc ¼ rCDU2 ð2Þ

where U is the depth averaged current velocity and CD is the
coefficient of drag given by

CD ¼ ½0:40=1þ lnðz0=hÞ�2 ð3Þ

And z0 is expressed as d/12 for hydrodynamically rough flow
(Soulsby, 1997).

Assuming a fully logarithmic profile. Linear wave theory is
used to convert direct observations of significant wave height,
period, and depth to significant bottom orbital velocity u0 and
diameter d0:

u0 ¼
pHs

T sinhðkhÞ
ð4Þ

d0 ¼
Hs

sinhðkhÞ
ð5Þ

The wave-induced forces acting on the bed are parameterized
with the wave Shields parameter:

yw ¼
tw

ðrs�rÞgd
ð6Þ

where tw is the maximum bottom shear stress given by

tw ¼
1

2
r fw ub

2 ð7Þ
where fw is the wave friction factor (Swart, 1974):

fw ¼ 0:3 for rr1:57

fw ¼ exp½5:213ðks=asÞ
0:194
�5:977� for r41:57

ð8Þ

where

r¼
ubT

2pks
ð9Þ

The Nikuradse equivalent sand grain roughness is defined as

ks ¼ 2:5d ð10Þ

And the near bed wave orbital amplitude is given by

as ¼
d0

2
ð11Þ

The resultant time series of hydrodynamic parameters and
forcing derivatives are plotted in Fig. 3.

Note that the skin friction shear stress, based on grain rough-
ness, was used to calculate the wave Shields parameter because
reliable observations of ripple height as well as measurements of
suspended sediment concentration, necessary to calculate form
drag and movable bed roughness, respectively, were unavailable.
Previous investigations have indicated that existing models of
ripple geometry are not appropriate for the prediction of form
drag, given non-equilibrium and combined forcing (waves and
currents) hydrodynamic conditions at the study site (Skarke and
Trembanis, 2008). Additionally, it is widely acknowledged that
the skin friction component of shear stress is primarily respon-
sible for sediment entrainment and transport (Nielsen, 1992;
Wright, 1995; Soulsby, 1997; Traykovski et al., 1999). However,
it is well understood that turbulent dissipation over rippled beds
generates structured vortices, which directly influence the trans-
port of suspended sediments (Grant and Madsen, 1982; Nielsen,
1992; Li et al., 1996; Soulsby, 1997). Accordingly, a more precise
calculation of boundary layer flow, bed stress, and turbulence
could be derived from the consideration of ripple height and
future investigations would do well to include the necessary
apparatuses and instruments to accurately observe these parameters
(Li and Amos, 1998; Traykovski et al., 1999; Tang et al., 2009).

2.3. Morphological data processing

Acoustic backscatter imagery was analyzed with processing
routines in Matlab computational software. All acoustic data is
referenced in a polar coordinate system relative to the instrument
as a bearing, range, and intensity. This data is first slant-range
corrected to convert range to distance across the seafloor. Next,
the bearing and range data is converted to Cartesian coordinates
(x,y) with each point being associated with a scalar backscatter
intensity value. Finally, these x, y, and backscatter values are
converted to geographical coordinates for synthesis with coin-
cident hydrodynamic data. Once the image domain is in geogra-
phical coordinates and raster format it is prepared for manual,
spectral, and fingerprint analysis.

Manual analysis was conducted with a graphical user interface
(GUI) code created with LabVIEW computational software. The
software first imports a rotary sonar image and projects it in
geographical coordinates within a GUI window. Next the program
projects a series of equally spaced parallel dashed lines over the
image. A user can then manipulate a knob in the GUI to adjust the
orientation of the projected lines and a slider control to adjust the
spacing of the lines to match as closely as possible the rhythmic
pattern on the underling image. When the user is satisfied that
they have matched the underlying images they then push a
button in the GUI which saves the data from the projected lines
as wavelength and orientation for that particular sonar image and



Fig. 3. Hydrodynamic conditions observed during deployments including wave and current azimuthal heading as well as magnitude. The presented wave direction is the

direction waves are propagating from, whereas the current direction is the direction currents are propagating towards in accordance with convention. The significant wave

orbital diameter and the significant Shields parameter are presented as well.
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then opens the next sonar image in chronological order. By
completing this procedure for all collected images, a time series
of manually determined bedform orientation and wavelength is
created. It is important to note that the orientation data is
adjusted to avoid the 1801 ambiguity of wave crest orientation
as well as wraparound issues that are common when plotting
orientation data.

Frequency spectra analysis of the sonar images was under-
taken through the application of the two-dimensional fast Fourier
transform. The code and processing methodology were modifica-
tions of those presented by Voulgaris and Morin (2008). First, an
image of the entire sonar domain was imported into Matlab and
converted to a raster array. Next the image was sub-divided into
eight individual images, which are equally spaced around the
position of the sonar transducer (Fig. 1B). These overlapping sub-
samples are located in the sonar near field where acoustic energy
is abundant and the seafloor is best defined. Additionally, the sub-
sample images are located around the sonar transducer so that
they represent locations where the acoustic beam is parallel as
well as orthogonal to the dominant ripple crest orientation.
Locations where the beam is perpendicular to the ripple crest
provide the best spectral estimates of orientation, while locations
where the beam is parallel to ripple crest provide the poorest
estimates of orientation. Next each of the eight sub-divided
images were resampled to match the median theoretical spatial
resolution of the sonar system (i.e. 2.4 cm2), in order to minimize
the potential for artifacts or aliasing. A two-dimensional FFT is
then preformed on each sub-sampled image. The resultant spec-
tral peaks are averaged to generate a single peak representative of
the entire domain. A parabolic filter is applied at the origin to
remove low frequency noise that arises from areas in the sampled
images that lack rhythmic geometry. Then, a Gaussian filter is
applied to the domain in order to smooth the spectral peak. The
ripple wave number coordinates of the spectral peak are deter-
mined following the method of Krogstad (2004), and the coordi-
nates are converted to a wavelength and orientation value with
the equations presented in Voulgaris and Morin (2008). These
values are collected for all images yielding time series of ripple
parameters for comparison with the results of other methodolo-
gies. In addition to the derived geometric parameters, a non-
dimensional reliability parameter, known as the peak index, was
calculated for each image, by dividing the power of the spectral
peak by the mean power of the entire domain (Voulgaris and
Morin, 2008). Peak index describes the height to width relation-
ship of the spectral peak and is representative of a combination of
total signal to noise ratio in the image, ripple definition, and
consistency in bedform wavelength and orientation across the
domain.

Fingerprint analysis techniques are applied to acoustic images of
rippled beds in order to create a more sophisticated and represen-
tative parameterization of ripple morphology and to address the
shortcomings of both manual and FFT analysis. This methodology is
based on the fingerprint enhancement and minutiae identification
algorithms presented by Hong et al. (1998), and subsequent modifi-
cations incorporated into the fingerprint processing code of Kovesi
(2000) and Thai (2003). Preprocessing begins with the importation
of a rotary sonar image, which is subsequently cropped to remove
marginal data outside the effective sonar range (Fig. 4A). Next, the
cropped image is normalized in order to standardize the backscatter
intensity across the domain, by adjusting the dynamic range of pixel
intensity in order to yield a consistent grayscale mean of zero and
variance of one. This process does not change the structure of the



Fig. 4. Rotary sonar image processing. (A) Original image normalized and cropped.

(B) Portion of image not meeting ripple threshold removed and ripple orientation

calculated (orientation field in blue). (C) Image filtered based on calculated ripple

orientation and frequency. (D) Binary image of ripple field. (E) Binary image

thinned to line on pixel in width. (F) Locations of ripple defects identified. This

image was collected on August 31, 2006, at 16:03:35 GMT during the Hen and

Chickens Shoal deployment.
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image, but rather standardizes the variance of the images which
improves contrast between ridge faces and shadows, as well as
facilitating the uniform application of further processing steps.

The local ridge crest orientation is estimated at each pixel by
identifying the direction (with 1801 ambiguity) orthogonal to the
principal axis of variation in Gaussian filtered backscatter gradi-
ents within a W�W sixe block centered on that pixel. The local
orientation yði,jÞis determined with the following equations
applied to a W�W pixel block centered on pixel ði,jÞ:

Vxði,jÞ ¼
XiþðW=2Þ

u ¼ i�ðW=2Þ

XjþðW=2Þ

v ¼ j�ðW=2Þ

2@xðu,vÞ@yðu,vÞ ð12Þ

Vyði,jÞ ¼
XiþðW=2Þ

u ¼ i�ðW=2Þ

XjþðW=2Þ

v ¼ j�ðW=2Þ

@2
x ðu,vÞ@2

y ðu,vÞ ð13Þ

yði,jÞ ¼
1

2
tan�1 Vyði,jÞ

Vxði,jÞ
ð14Þ

where @xði,jÞ and @yði,jÞ are the gradient magnitudes at pixel ði,jÞ
in the x and y directions, respectively (Thai, 2003). For both
deployments W was assigned a value of 18 corresponding to a
0.43 m2 box given the sonar image pixel resolution of 2.4 cm. The
least squares estimate of backscatter gradient for the entire box is
used to determine the ridge orientation at the central pixel, which
always lies orthogonal to the direction of steepest gradient within
the box. The resultant orientation values for each pixel in the
image are converted to a continuous vector field. It is assumed
that the ridge orientation within the domain varies minimally at
the spatial scale of the W�W block, and thus a low-pass Gaussian
filter is used to smooth the vector field for the entire domain
(Fig. 3B). The frequency of orientation values from each pixel in
the domain can then be used to statistically determine orientation
variance (standard deviation) and an orientation value (mean or
median) representative of the entire image.

The generated continuous vector field is used to determine the
‘‘reliability’’ of orientation data which in turn can be used to
generate a mask to exclude data from portions of the image that
do not contain ripple information. For each W�W pixel block, the
variability of pixel intensity along the calculated orientation is
determined as well as the variability of pixel intensity orthogonal
to the derived orientation. The ripple reliability value is calculated
as 1.0 – (orientation parallel variability/orientation perpendicular
variability). In areas of the domain that are rippled, the along
ridge variability is significantly smaller than the across ridge
variability yielding a high reliability value. Portions of the domain
lacking ripples will have similar variability values parallel and
perpendicular to the derived orientation yielding a low reliability
value. Once the pixelwise reliability of the sonar image is determined
across the domain, a global reliability threshold can be applied and
pixels with reliability greater the thresholds are retained as areas of
rhythmic morphology while those with variance less than the
threshold are excluded from further processing (Fig. 4B).

The ridge wavelength values are determined based upon the
continuous vector field of orientation. The image domain is now
divided in to Y�Y pixel blocks, which are large enough to
incorporate multiple ripple wavelengths. The local wavelength
at each pixel is determined by considering a Gaussian smoothed
profile of backscatter values along a line orthogonal to the mean
orientation of all pixels in the Y�Y pixel block centered on that
pixel. Local wavelength is at pixel ði,jÞis evaluated as:

Fði,jÞ ¼
1

Sði,jÞ
ð15Þ

where Sði,jÞ the spatial frequency of localized peaks in the back-
scatter profile across the Y x Y block (Thai, 2003). This plotted line
exhibits a roughly saw-tooth waveform, which is smoothed with
a Gaussian low-pass filter to reduce the effects of noise in the
image. The ridge spacing is determined by calculating the median
number of pixels between consecutive maxima points in the
plotted waveform. The block dimensions Y should be based on the
native resolution of the image and be significantly larger than the
Nyquist frequency for the largest expected ripple wavelength, in
order to prevent aliasing effects from being manifest in subse-
quent processing steps. The widow length in pixels used to
determine local maxima points is calculated as the number of
times the plotted line crosses its own arithmetic mean divided by
the length of the line in pixels. The native resolution of the sonar
image can be used to convert the resultant frequency values from
pixel units to wavelength distance in meters. Finally, the fre-
quency of wavelength values from each pixel in the domain can
then be used to statistically determine wavelength variance
(standard deviation) and a wavelength value (mean or median)
representative of the entire image.

Next, a filter is applied to the domain in order to preserve the
ripple structure and remove noise. The ripple orientation and
frequency values derived from the domain are used to create
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a two-dimensional Gabor filter. The Gabor filter is composed of a
frequency and orientation selective sinusoidal wave. When
applied in a blockwise method, this characteristic allows the filter
to be tuned to the derived block frequency and orientation,
yielding maximal preservation of ripple structure while signifi-
cantly reducing noise (Fig. 4C). Next, a global binarization thresh-
old is applied to the filtered image, which has a mean intensity of
zero. All pixels with intensity values greater than zero are set to a
binary value of one, all values less than zero are set to a binary
value of zero (Fig. 4D). The foreground portion of the binary image
(pixel values¼1) is then thinned by removing boundary pixels
iteratively, until it is a single pixel in width (Fig. 4E). The resulting
image is processed pixelwise in order to identify the location of
ripple defect features (Fig. 4F). A 3�3 pixel block centered on each
binary pixel with a value of one is considered. If the nine-pixel sum
is equal to two, a ripple termination has been identified, and if the
nine-pixel sum is equal to 4 a ripple bifurcation has been identified.
This processing step yields a new logical binary image in which the
location of ripple defect features assigned a value of one and all
other pixels are assigned a value of zero. The total number of
identified ripple defect features is then normalized by the total area
of the sampled portion of the image in order to define a defect
density for the image. This normalization can also be applied in a
blockwise manner in order to quantity the spatial variability of
defect density across a single image. Complete numerical expres-
sions for each of the preceding processing steps are presented in
Hong et al. (1998) and Thai (2003).
Fig. 5. Scatter plot of a prescribed wavelength versus the fingerprint/spectral

determined wavelength for a series of 100 synthetic images with a signal to noise

ratio of 3. The dashed line represents equivalence. The R squared statistic for the

spectral, fingerprint mean, and fingerprint mode data are 0.98 0.99, and 0.99,

respectively. Four example synthetic images are presented below the scatter plot.
3. Results and discussion

A comparison of automated methods for deriving ripple
wavelength is presented in Fig. 5. The spectral and fingerprint
analysis methods were applied to a series of 100 synthetic images
of a seafloor with linear ripples with a prescribed wavelength,
which varies from 0.1 to 2.5 m. The pixel resolution of the images
was 2.4 cm and isotropic noise was added to yield signal to noise
ratio of 3. The spectral results have an R squared statistic of 0.98
and exhibit better agreement with the prescribed wavelength at
lower values. The arithmetic mean of all wavelengths in the
image domain determined by the fingerprint method has an R

squared statistic of 0.99 and displays better agreement with
prescribed vales at large wavelength and diminished agreement
at wavelengths less than 0.2 m. The mode of all wavelengths in
the image domain determined by the fingerprint method has an R

squared statistic of 0.99 and displays the best agreement with
prescribed values, among all methods at large wavelength and the
poorest agreement among all methods at wavelengths less than
0.2 m. All three methods display equal skill and a very high
capacity to accurately parameterize wavelength for an idealized
two-dimensional rippled bed. In order to define the boundaries of
applicability for each method with regard to more realistic
morphological conditions, synthetic images of the seafloor, with
variable prescribed levels of noise and sinuosity, based upon field
observations, were processed with the spectral and fingerprint
techniques in Fig. 6. In the upper panels of Fig. 6 the spectral and
fingerprint analysis methods were applied to a series of 25
synthetic images, with static ripple dimensions and a prescribed
signal to noise ratio, which ranges from 0.4 to 2.1. All three
methods exhibit good agreement with the prescribed orientation
and wavelength at signal to noise rations above one. Below a signal
to noise ratio of one, the quality of agreement for all methods
degrades, but does so more precipitously for the spectral method,
especially in observations of ripple wavelength. In the lower panels
of Fig. 6 the spectral and fingerprint analysis methods were applied
to a series of 35 synthetic images, with static ripple dimensions and
a ripple planform sinuosity, as defined by the planform amplitude
divided by the planform wavelength, which ranges from 0 to 0.2. All
methods show agreement with the prescribed orientation and
wavelength at values of low planform sinuosity. As ripple sinuosity
increases the spectral observations of wavelength and orientation
deviate significantly from prescribed values while the two finger-
prints remain in much closer agreement. Conditions of high noise
and ripple sinuosity are very common in field collected seafloor
imagery, and as such, the results presented in Figs. 5 and 6 indicate
that the fingerprint method has a higher capacity for parameterizing
natural bedform geometry.

A comparison of manual, spectral, and fingerprint methods for
deriving ripple orientations and wavelengths for both field
deployments is presented in Figs. 7 and 8. For the Cedar Island
deployment there is variable agreement between the three



Fig. 6. Plot of determined wavelength and orientation for synthetic images with increasing isotropic noise (top) and increasing planform sinuosity (bottom). Noise is

parameterized by a signal to noise ratio and planform ripple sinuosity is parameterized as the planform amplitude divided by the planform wavelength. Four example

synthetic images from each trial are presented.

Fig. 7. Comparison of manual, spectral, and fingerprint analysis results for ripple orientation and wavelength at Cedar Island. The colormap represents the probability

distribution for orientation and wavelength across the sampled sonar domain as determined by the fingerprint method. The spectral peak index for the deployment based

upon the expression of Voulgaris and Morin (2008) is presented at the bottom.
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Fig. 8. Comparison of manual, spectral, and fingerprint analysis results for ripple orientation and wavelength at Hen and Chickens Shoal. The shaded area represents the

standard deviation of all values extracted from a single image. Colormap represents the probability distribution for orientation and wavelength across the sampled sonar

domain as determined by the fingerprint method. The spectral peak index for the deployment based upon the expression of Voulgaris and Morin (2008) is presented at

the bottom.
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methodologies for both ripple orientation and wavelength. Manual
and spectral estimates of ripple orientation agree throughout the
deployment and both show a moderate disagreement with the
fingerprint mean prior to 8/6 followed by greater disagreement
until 8/12 at which point all three methods agree briefly before
diverging on 8/14. There is moderate disagreement between all
three estimates of ripple wavelength prior to 7/30 at which point
all methods agree until 8/7 when they diverge and exhibit
increasing disagreement for the duration of the deployment. A
sonar image from 7/27 (Fig. 9) indicates that the bed is composed
of linear ripples for which the best estimate of orientation is given
by the manual method and the mode of orientations derived by the
fingerprint method (as indicated by the maximum PDF value in
Fig. 7), both of which agree well. The variability in wavelength
estimates among all methods is minimal, making a visual con-
firmation of the most actuate approach impossible. A sonar image
from 8/8 (Fig. 9) exhibits significant noise, which may be asso-
ciated with elevated suspended sediment concentrations, asso-
ciated with a rapid increase in the current shields parameter
during this time. Regardless of the mechanism, the high noise
level obscures the bed and suppresses any morphologic signal. This
absence of signal in the imagery is likely responsible for the wide
range of estimated orientations and may in fact be responsible for
the extended period of methodological disagreement from 8/6 to
8/12. Subsequent to this period the bed exhibits linear ripple with
a very small wavelength on 18/13 (Fig. 9). During this period of
moderately defined bed state, all four methods agree well in their
estimates of bed orientation and show significant variability in
estimates of bed wavelength. Disagreement among estimates of
ripple wavelength may arise from the fact that ripple spacing
appears to be very close to the minimum theoretical detectable
value (9.6 cm) based upon the resolution of the sonar instrument.
This supposition is consistent with results presented in Fig. 5,
which indicate variability in wavelength estimates at particularly
low values.

For the Hen and Chickens Shoal deployment methodological
estimates of ripple wavelength and orientation exhibit poor
agreement prior to 8/26 and moderate to good agreement
between 8/26 and 9/1. After 9/1 there is a significant degradation
in methodological agreement for wavelength and orientation
estimates, which persist through the conclusion of the deploy-
ment. A sonar image from 8/23 (Fig. 9) during the initial period of
significant methodological disagreement exhibits a seafloor with
rough but very poorly oriented bed morphology. Orientation
estimates of the manual, spectral, and fingerprint mode methods
generally agree, whereas the fingerprint mean method is signifi-
cantly different. The image noise level precludes determination of
the best method, but the agreement of three methods suggests
they may be more reliable than the outlying fingerprint mean. A
sonar image collected on 8/27 (Fig. 9) during a period of poor
methodological agreement exhibits well-defined linear ripples.
The orientation as determined by the fingerprint mode and
manual methods appears to best match the seafloor image.
Finally, a seafloor image collected on 8/31 (Fig. 9) during a period
of moderate methodological agreement displays very well-
defined sinuous ripples. Estimates of ripple orientation yielded
by the spectral and fingerprint mode methods appear to best fit
the bed orientation imaged by the sonar.

For both deployments, the three analysis methods show better
agreement during periods in which sonar images of the bed exhibit
more organized bedforms. Observed organized bed states appear, in
general, to correlate with periods of consistent magnitude and
direction in hydrodynamic forcing or periods of significantly elevated
forcing magnitudes both of which are associated with driving the



Fig. 9. Raw sonar images from both deployments with the derived ripple orientation and wavelength superimposed. Spectral (blue), fingerprint mean (red), fingerprint

mode (yellow), and manual (white). The ripple defect densities/m2 for each image in chronological order are 10.1, 8.5, 15.9, 9.5, 11.2, and 5.1. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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bed towards a state of morphological equilibrium. This relationship is
further supported by the peak index as formulated by Voulgaris and
Morin (2008), which is a proxy for ripple definition and generally
exhibits elevated values during periods of methodological agreement
and low values during periods of methodological disagreement
(Figs. 7 and 8). Assessment of orientation and wavelength estimates
from simulated (Fig. 6) and field images (Fig. 9) indicate that the
mode of values across the sampled domain as determined by the
fingerprint method is best suited to parameterizing bed morphology
especially in conditions of poorly defined or sinuous bed states.

The probability distribution for wavelength and orientation
across the ‘‘reliable’’ portions of the sampled domain as deter-
mined by the fingerprint method is presented as colormap plots
in Figs. 7 and 8 as well. The probability distribution results are
unique to the fingerprint method and reveal dynamic spatial
variability in the occurrence and deviation of bedform parameters
(wavelength and orientation), which appear to have a strong
correlation with observed forcing conditions (Shields parameters).
Statistical treatment of this data promises to yield not only a single
descriptive wavelength and orientation for a seafloor image, but
rather a quantitative description of how these parameters vary
across the sampled domain. This approach holds great promise for
producing improved models of the relationship between hydrody-
namic forcing and complex bed morphology such as bimodal
orientations related to variable forcing directions or multiple wave-
lengths as are known to occur with parasitic bedforms. The potential
for characterizing morphological parameters probabilistically rather
than as a single finite representative value calls for significant
analysis, which is beyond the purview of this methodological paper,
and will be presented in a forthcoming process based article by the
authors.

Fig. 10 presents a time series of ripple defect density as calculated
with the fingerprint analysis methodology. During both deployments
significant decreases in defect density coincided with rapid increases



Fig. 10. Ripple defect density plotted relative to observed ripple orientation and wavelength, wave direction, and Shields parameters for waves and currents.
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in the Shields parameter likely associated with a storm events. As
expected the dominant wave direction responds to these periodic
storm events, rotating to the north, and the ripple orientating values
follow in turn, though with muted intensity. Downward spikes in
defect density correlate well with rapid changes in bedform orienta-
tion, which is counter to the hypothesis presented by Maier and Hay
(2009) which indicated elevated defect occurrence during times or
rapid ripple reorientation. Additionally, sediment transport theory
indicates that increases in the Shields parameter value, which
coincide with downward deflection in defect density, result in
elevated bedform migration rates, supporting the relationship pro-
posed by Werner and Kocurek (1999) . Ripple wavelength does
not exhibit a first order correlation with defect density for either
deployment. A consideration of the sonar imagery with respect to
defect density variability (Fig. 9) suggests that higher defects
densities are associated with periods of poor bed definition, where
as lower defect densities are associated with periods of greater bed
definition. Future efforts will further consider the causality between
hydrodynamic forcing parameters and occurrence of bedform defect
features.

Although, a majority of this paper has focused on the temporal
evolution of ripple parameters within a relatively small domain,
the presented fingerprint analysis method is equally useful for
making observations of the large-scale spatial variability of ripple
morphology. Fig. 9 presets a sub-sample of a side-scan sonar
image collected with an autonomous underwater vehicle at the
Martha’s Vineyard Coastal Observatory (Trembanis et al., 2010).
The sonar image is of a sorted bedform feature, which exhibits
both mega ripple and anorbital ripple seafloor in close proximity.
Because of the native resolution of the image, only the mega
ripples are preserved, while the areas with the much smaller
anorbital ripples at sub-Nyquist frequency appear featureless. The
image is first processed to determine the mega ripple orientation
and reliability as in the manner presented in Methods section.
Because this operation is pixelwise, the resolution of the calcula-
tions matches the native resolution of the image, which is 10 cm2
in Fig. 9. A threshold is applied to the reliability values of each
pixel to isolate the rippled portions of the domain and mask
values from non-rippled areas in subsequent results. The three
colormap images show the spatial variability of bedform orienta-
tion, wavelength, and defect density across the rippled portion of
the original image (Fig. 11).

In addition to showing great potential to yield insight into
fundamental physical processes occurring at the seabed, finger-
print analysis techniques also produce a number of products
particularly valuable to operational defense applications. For
example, the ability to rapidly calculate the location and density
of bedform defects on side-scan sonar images of the seafloor
could be applied to seafloor mine and shipwreck detection (Mayer
et al., 2007; Trembanis et al., 2007; McNinch et al., 2006). Partially
buried objects such as mines and shipwrecks subjected to scour
processes tend to settle downwards until their highest point is
approximately level with the surrounding seabed (Trembanis
et al., 2007). Scour processes around such an object result in
multiple small bedforms in close proximity, which would be
manifest on a sonar image as a very dense clustering of ripple
defects. A map of the spatial distribution of defect density such as
the one presented in Fig. 9 could then be used rapidly target
potential mine or shipwreck locations. Ripple orientation calcula-
tions and their associated reliability are additional fingerprint
analysis products, which could be applied to related defense
applications. One of the most challenging environments for
identifying seafloor mines are mega-rippled beds because cylind-
rical ordnance is difficult to visually differentiate from mega
ripples in side-scan images. Calculations of ripple reliability allow
for differentiation of ripple from non-rippled areas giving a side-
scan sonar operator or autonomous vehicle the ability to deter-
mine the most important areas to target for survey. Additionally,
the calculation of ripple orientation allows an operator or vehicle
to plan a survey route orthogonal to the ripple crest so that the
shadowing effect of ripples is minimized in the resultant side-
scan sonar image (Williams and Coiras, 2010).



Fig. 11. Side-scan sonar image of seafloor ripples (axes in meters). Parameterization of spatial variability in ripple orientation, wavelength, and defect density. Note

automated differentiation of rippled and non-rippled areas in a sorted bedform field.
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4. Conclusions

The application of fingerprint analysis methods for ripple para-
meterization yields a number of improvements over previous
methodologies. The new method generates values for ripple orien-
tation and wavelength that are superior to those produced with
manual analysis and comparable to those produced with spectral
analysis. Additionally, this method generates independent discrete
probability distributions for each parameter, and allows for thresh-
old masking of sonar data based upon the degree of seafloor
structural orientation, both of which are not possible with the
spectral or manual methods. In addition to providing an improved
method for deriving widely used bedform parameters, the finger-
print analysis method can evaluate bedform defect density, which is
a previously unused parameter that exhibits a strong relationship
with observed morphological and hydrodynamic processes. These
initial findings indicate the great potential of fingerprint analyses
techniques for improved observations of the morphological evolu-
tion of the seafloor and suggest that observations of defect density
may yield greater insight into bedform morphological processes.
Further efforts with regard to this introduced methodology will
consider the specific response of beform geometry (including ripple
height) and defect density values to wide variety of forcing para-
meters and seek to establish a quantitative relationship between
hydrodynamic flow, bed morphology, and defect behavior.
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